You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
None
This volume contains original research and survey articles stemming from the Euroconference ``Algebraic and Geometric Combinatorics''. The papers discuss a wide range of problems that illustrate interactions of combinatorics with other branches of mathematics, such as commutative algebra, algebraic geometry, convex and discrete geometry, enumerative geometry, and topology of complexes and partially ordered sets. Among the topics covered are combinatorics of polytopes, lattice polytopes, triangulations and subdivisions, Cohen-Macaulay cell complexes, monomial ideals, geometry of toric surfaces, groupoids in combinatorics, Kazhdan-Lusztig combinatorics, and graph colorings. This book is aimed at researchers and graduate students interested in various aspects of modern combinatorial theories.
Reprint of the original, first published in 1843.