Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Gromov-Witten Theory of Spin Curves and Orbifolds
  • Language: en
  • Pages: 202

Gromov-Witten Theory of Spin Curves and Orbifolds

This volume is a collection of articles on orbifolds, algebraic curves with higher spin structures, and related invariants of Gromov-Witten type. Orbifold Gromov-Witten theory generalizes quantum cohomology for orbifolds, whereas spin cohomological field theory is based on the moduli spaces of higher spin curves and is related by Witten's conjecture to the Gelfand-Dickey integrable hierarchies. A common feature of these two very different looking theories is the central role played by orbicurves in both of them. Insights in one theory can often yield insights into the other. This book brings together for the first time papers related to both sides of this interaction. The articles in the collection cover diverse topics, such as geometry and topology of orbifolds, cohomological field theories, orbifold Gromov-Witten theory, $G$-Frobenius algebra and singularities, Frobenius manifolds and Givental's quantization formalism, moduli of higher spin curves and spin cohomological field theory.

String-Math 2011
  • Language: en
  • Pages: 506

String-Math 2011

The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.

Recent Trends in Partial Differential Equations
  • Language: en
  • Pages: 136

Recent Trends in Partial Differential Equations

This volume contains the research and expository articles for the courses and talks given at the UIMP-RSME Lluis A. Santalo Summer School, Recent Trends in Partial Differential Equations. The goal of the Summer School was to present some of the many advances that are currently taking place in the interaction between nonlinear partial differential equations and their applications to other scientific disciplines. Oriented to young post-docs and advanced doctoral students, the courses dealt with topics of current interest. Some of the tools presented are quite powerful and sophisticated. These new methods are presented in an expository manner or applied to a particular example to demonstrate the main ideas of the method and to serve as a handy introduction to further study. Young researchers in partial differential equations and colleagues from neighboring fields will find these notes a good addition to their libraries. This is a joint publication of the Real Sociedad Matematica Espanola and the American Mathematical Society.

Prospects in Mathematical Physics
  • Language: en
  • Pages: 258

Prospects in Mathematical Physics

This book includes papers presented at the Young Researchers Symposium of the 14th International Congress on Mathematical Physics, held in July 2003, in Lisbon, Portugal. The goal of thes book is to illustrate various promising areas of mathematical physics in a way accessible to researchers at the beginning of their career. Two of the three laureates of the Henri Poincare Prizes, Huzihiro Araki and Elliott Lieb, also contributed to this volume. The book provides a good survey of some active areas of research in modern mathematical physics.

Advances in Algebraic Geometry Motivated by Physics
  • Language: en
  • Pages: 310

Advances in Algebraic Geometry Motivated by Physics

Our knowledge of objects of algebraic geometry such as moduli of curves, (real) Schubert classes, fundamental groups of complements of hyperplane arrangements, toric varieties, and variation of Hodge structures, has been enhanced recently by ideas and constructions of quantum field theory, such as mirror symmetry, Gromov-Witten invariants, quantum cohomology, and gravitational descendants. These are some of the themes of this refereed collection of papers, which grew out of the special session, ``Enumerative Geometry in Physics,'' held at the AMS meeting in Lowell, MA, April 2000. This session brought together mathematicians and physicists who reported on the latest results and open questions; all the abstracts are included as an Appendix, and also included are papers by some who could not attend. The collection provides an overview of state-of-the-art tools, links that connect classical and modern problems, and the latest knowledge available.

String-Math 2015
  • Language: en
  • Pages: 306

String-Math 2015

This volume contains the proceedings of the conference String-Math 2015, which was held from December 31, 2015–January 4, 2016, at Tsinghua Sanya International Mathematics Forum in Sanya, China. Two of the main themes of this volume are frontier research on Calabi-Yau manifolds and mirror symmetry and the development of non-perturbative methods in supersymmetric gauge theories. The articles present state-of-the-art developments in these topics. String theory is a broad subject, which has profound connections with broad branches of modern mathematics. In the last decades, the prosperous interaction built upon the joint efforts from both mathematicians and physicists has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side, as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side.

Harmonic Analysis
  • Language: en
  • Pages: 162

Harmonic Analysis

Starting in the early 1950's, Alberto Calderon, Antoni Zygmund, and their students developed a program in harmonic analysis with far-reaching consequences. The title of these proceedings reflects this broad reach. This book came out of a DePaul University conference honoring Stephen Vagi upon his retirement in 2002. Vagi was a student of Calderon in the 1960's, when Calderon and Zygmund were at their peak. Two authors, Kenig and Gatto, were students of Calderon; one, Muckenhoupt, was a student of Zygmund. Two others studied under Zygmund's student Elias Stein. The remaining authors all have close connections with the Calderon-Zygmund school of analysis. This book should interest specialists ...

Poisson Geometry in Mathematics and Physics
  • Language: en
  • Pages: 330

Poisson Geometry in Mathematics and Physics

This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.

Algebraic and Geometric Combinatorics
  • Language: en
  • Pages: 342

Algebraic and Geometric Combinatorics

This volume contains original research and survey articles stemming from the Euroconference ``Algebraic and Geometric Combinatorics''. The papers discuss a wide range of problems that illustrate interactions of combinatorics with other branches of mathematics, such as commutative algebra, algebraic geometry, convex and discrete geometry, enumerative geometry, and topology of complexes and partially ordered sets. Among the topics covered are combinatorics of polytopes, lattice polytopes, triangulations and subdivisions, Cohen-Macaulay cell complexes, monomial ideals, geometry of toric surfaces, groupoids in combinatorics, Kazhdan-Lusztig combinatorics, and graph colorings. This book is aimed at researchers and graduate students interested in various aspects of modern combinatorial theories.

Quantum Graphs and Their Applications
  • Language: en
  • Pages: 322

Quantum Graphs and Their Applications

This volume is a collection of articles dedicated to quantum graphs, a newly emerging interdisciplinary field related to various areas of mathematics and physics. The reader can find a broad overview of the theory of quantum graphs. The articles present methods coming from different areas of mathematics: number theory, combinatorics, mathematical physics, differential equations, spectral theory, global analysis, and theory of fractals. They also address various important applications, such as Anderson localization, electrical networks, quantum chaos, mesoscopic physics, superconductivity, optics, and biological modeling.