You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Algebraic groups and Lie groups are important in most major areas of mathematics, occuring in diverse roles such as the symmetries of differential equations and as central figures in the Langlands program for number theory. In this book, Professor Borel looks at the development of the theory of Lie groups and algebraic groups, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. As the starting point of this passagefrom local to global, the author takes Lie's theory of local analytic transformation groups and Lie algebras. He then follows the globalization of the process in its two most important frameworks: (transcendental) dif...
This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally’s structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.
Armand Borel’s mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel’s work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan, and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume I collects the papers written from 1948 to 1958.
This book is a publication in Swiss Seminars, a subseries of Progress in Mathematics. It is an expanded version of the notes from a seminar on intersection cohomology theory, which met at the University of Bern, Switzerland, in the spring of 1983. This volume supplies an introduction to the piecewise linear and sheaf-theoretic versions of that theory as developed by M. Goresky and R. MacPherson in Topology 19 (1980), and in Inventiones Mathematicae 72 (1983). Some familiarity with algebraic topology and sheaf theory is assumed.
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.
Armand Borel’s mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel’s work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan, and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume I collects the papers written from 1948 to 1958.
The description for this book, Seminar on Transformation Groups. (AM-46), Volume 46, will be forthcoming.
This book collects the papers published by A. Borel from 1983 to 1999. About half of them are research papers, written on his own or in collaboration, on various topics pertaining mainly to algebraic or Lie groups, homogeneous spaces, arithmetic groups (L2-spectrum, automorphic forms, cohomology and covolumes), L2-cohomology of symmetric or locally symmetric spaces, and to the Oppenheim conjecture. Other publications include surveys and personal recollections (of D. Montgomery, Harish-Chandra, and A. Weil), considerations on mathematics in general and several articles of a historical nature: on the School of Mathematics at the Institute for Advanced Study, on N. Bourbaki and on selected aspects of the works of H. Weyl, C. Chevalley, E. Kolchin, J. Leray, and A. Weil. The book concludes with an essay on H. Poincaré and special relativity. Some comments on, and corrections to, a number of papers have also been added.
Armand Borel’s mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel’s work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume II collects the papers written from 1959 to 1968.
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.