You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book concerns the mathematical analysis OCo modeling physical concepts, existence, uniqueness, stability, asymptotics, computational schemes, etc. OCo involved in predicting complex mechanical/acoustical behavior/response and identifying or optimizing mechanical/acoustical systems giving rise to phenomena that are either observed or aimed at. The forward problems consist in solving generally coupled, nonlinear systems of integral or partial (integer or fractional) differential equations with nonconstant coefficients. The identification/optimization of the latter, of the driving terms and/or of the boundary conditions, all of which are often affected by random perturbations, forms the class of related inverse or control problems."
Marine Acoustics: Direct and Inverse Problems presents current research trends in the field of underwater acoustic wave direct and inverse problems. It is the first to investigate inverse problems in an ocean environment, with heavy emphasis on the description and resolution of the forward scattering problem.
This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.
Homogenization is a fairly new, yet deep field of mathematics which is used as a powerful tool for analysis of applied problems which involve multiple scales. Generally, homogenization is utilized as a modeling procedure to describe processes in complex structures. Applications of Homogenization Theory to the Study of Mineralized Tissue functions as an introduction to the theory of homogenization. At the same time, the book explains how to apply the theory to various application problems in biology, physics and engineering. The authors are experts in the field and collaborated to create this book which is a useful research monograph for applied mathematicians, engineers and geophysicists. As...
Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.
The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach ? of Estrada, Kanwal and Vindas ? is related to moment asymptotic expansions of generalized functions and the Ces'aro behavior. The main feature...
This introductory book contains a rich collection of exercises and worked examples in Metric Spaces. Other than questions in the traditional setting, plenty of True-or-False type questions and open-ended questions are included. With detailed solutions, these are highly effective in helping students gain a bird's eye view and master the subject and pitfalls better. The presentation is clear in nurturing the mathematical insights and mathematical maturity of the readers.In this book, the pictorialization or visualization of abstract situations into simple pictures is very often crucially conducive to the understanding of the materials. This serves to give an insightful view of the intricate problems, as well as a clue or a direction to formulate rigorous arguments.The learning outcomes include:
This book is ideal for a one-semester course for advanced undergraduate students and first-year graduate students in mathematics. It is a straightforward and coherent account of a body of knowledge in complex analysis, from complex numbers to Cauchy's integral theorems and formulas to more advanced topics such as automorphism groups, the Schwarz problem in partial differential equations, and boundary behavior of harmonic functions.The book covers a wide range of topics, from the most basic complex numbers to those that underpin current research on some aspects of analysis and partial differential equations. The novelty of this book lies in its choice of topics, genesis of presentation, and lucidity of exposition.