You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each bipolar neutrosophic number represents an element of the matrix. The matrices are representable multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, especially the composition is a challenging algorithm in terms of coding because there are so many nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices.
Neutrosophic set theory provides a new tool to handle the uncertainties in shortest path problem (SPP). This paper introduces the SPP from a source node to a destination node on a neutrosophic graph in which a positive neutrosophic number is assigned to each edge as its edge cost. We define this problem as neutrosophic shortest path problem (NSSPP). A simple algorithm is also introduced to solve the NSSPP. The proposed algorithm finds the neutrosophic shortest path (NSSP) and its corresponding neutrosophic shortest path length (NSSPL) between source node and destination node.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this article, inaugurate interval-valued triangular neutrosophic fuzzy graph (IVTNFG) of SPP, which is drew on three-sided numbers and IVTNFG. Hear a genuine application is given an illustrative model for IVTNFG. Additionally Shortest way is determined for this model. This present Dijkstra's Algorithm briefest way was checked through Python Jupiter Notebook (adaptation) programming.
Telephony is gaining momentum in the daily lives of individuals and in the activities of all companies. With the great trend towards telephony networks, whether analogue or digital known as Voice over IP (VoIP), the number of calls an individual can receive becomes considerably high.
This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books.
In recent time graphical analytics of uncertainty and indeterminacy has become major concern for data analytics researchers. In this direction, the mathematical algebra of neutrosophic graph is extended to interval-valued neutrosophic graph. However, building the interval-valued neutrosophic graphs, its spectrum and energy computation is addressed as another issues by research community of neutrosophic environment. To resolve this issue the current paper proposed some related mathematical notations to compute the spectrum and energy of interval-valued neutrosophic graph using the MATAB.
This paper introduces a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers in continuation with other defined single valued neutrosophic numbers. The paper provides basic algebra like addition, subtraction and multiplication of a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers with examples. In addition, the paper introduces matrix for single valued (2n as well as 2n+1) sided polygonal neutrosophic matrix and its properties.
This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics;...