You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The revised edition of this established work presents an extended overview of recent applications of symmetry to the description of atomic nuclei, including a pedagogical introduction to symmetry concepts using simple examples. Following a historical overview of the applications of symmetry in nuclear physics, attention turns to more recent progress in the field. Special emphasis is placed on the introduction of neutron-proton and boson-fermion degrees of freedom. Their combination leads to a supersymmetric description of pairs and quartets of nuclei. Expanded and updated throughout, the book now features separate chapters on the nuclear shell model and the interacting boson model, the forme...
The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as g...
Photoemission spectroscopy is one of the most extensively used methods to study the electronic structure of atoms, molecules, and solids and their surfaces. This volume introduces and surveys the field at highest energy and momentum resolutions allowing for a new range of applications, in particular for studies of high temperature superconductors.
This monograph introduces an exact model for a critical spin chain with arbitrary spin S, which includes the Haldane--Shastry model as the special case S=1/2. While spinons in the Haldane-Shastry model obey abelian half-fermi statistics, the spinons in the general model introduced here obey non-abelian statistics. This manifests itself through topological choices for the fractional momentum spacings. The general model is derived by mapping exact models of quantized Hall states onto spin chains. The book begins with pedagogical review of all the relevant models including the non-abelian statistics in the Pfaffian Hall state, and is understandable to every student with a graduate course in quantum mechanics.
Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast ...
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( – Lorentz factor, – wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
This book constitutes the first effort to summarize a large volume of results obtained over the past 20 years in the context of the Discrete Nonlinear Schrödinger equation and the physical settings that it describes.
With an emphasis firmly on telling the story from an experimental viewpoint, this book reviews the impact that the LEP experiments have had on the subject of b-quark physics. Highlights of the final b-physics results from the LEP collaborations are reviewed.
The theory of the muon anomalous magnetic moment is particle physics in a nutshell. It is an interesting, exciting and difficult subject, and this book provides a comprehensive review of it. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics, and any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics.
Throughout my whole career including student time I have had a feeling that leaning and teaching electromagnetism, especially macroscopic Maxwell equations (M-eqs) is dif?cult. In order to make a good use of these equations, it seemed necessary to be able to use certain empirical knowledges and model-dependent concepts, rather than pure logics. Many of my friends, colleagues and the physicists I have met on various occasions have expressed similar impressions. This is not the case with microscopic M-eqs and quantum mechanics, which do not make us feel reluctant to teach, probably because of the clear logical structure. What makes us hesitate to teach is probably because we have to explain what we ourselves do not completely understand. Logic is an essential element in physics, as well as in mathematics, so that it does not matter for physicists to experience dif?culties at the initial phase, as far as the logical structure is clear. As the we- known principles of physics say, “a good theory should be logically consistent and explain relevant experiments”. Our feeling about macroscopic M-eqs may be related with some incompleteness of their logical structure.