You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The improvement of crop species has been a basic pursuit since cultivation began thousands of years ago. To feed an ever increasing world population will require a great increase in food production. Wheat, corn, rice, potato and few others are expected to lead as the most important crops in the world. Enormous efforts are made all over the world to document as well as use these resources. Everybody knows that the introgression of genes in wheat provided the foundation for the “Green Revolution”. Later also demonstrated the great impact that genetic resources have on production. Several factors are contributing to high plant performance under different environmental conditions, therefore an effective and complementary use of all available technological tools and resources is needed to meet the challenge.
This book highlights modern methods and strategies to improve cereal crops in the era of climate change, presenting the latest advances in plant molecular mapping and genome sequencing. Spectacular achievements in the fields of molecular breeding, transgenics and genomics in the last three decades have facilitated revolutionary changes in cereal- crop-improvement strategies and techniques. Since the genome sequencing of rice in 2002, the genomes of over eight cereal crops have been sequenced and more are to follow. This has made it possible to decipher the exact nucleotide sequence and chromosomal positions of agroeconomic genes. Most importantly, comparative genomics and genotyping-by-sequencing have opened up new vistas for exploring available biodiversity, particularly of wild crop relatives, for identifying useful donor genes.
In the recent years, the looming food scarcity problem has highlighted plant sciences as an emerging discipline committed to devise new strategies for enhanced crop productivity. The major factors causing food scarcity are biotic and abiotic stresses such as plant pathogens, salinity, drought, flooding, nutrient deficiency or toxicity which substantially limit crop productivity world-wide. In this scenario, strategies should be adopted to achieve maximum productivity and economic crop returns. In this book we have mainly focused on physiological, biochemical, molecular and genetic bases of crop development and related approaches that can be used for crop improvement under environmental adversaries. In addition, the adverse effects of different biotic (diseases, pathogens etc.) and abiotic (salinity, drought, high temperatures, metals etc) stresses on crop development and the potential strategies to enhance crop productivity under stressful environments are also discussed.
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops. It is a serial title that appears in the form of one or two volumes per year.
Wheat Quality for Improving Processing and Human Health brings together an international group of leading wheat scientists to outline highly relevant and diverse aspects and the latest advances in understanding of the world’s most consumed cereal. Topics covered include LMW glutenins, starch-related proteins, and the impact of processing on composition and consumer health. Individual chapters focus on important factors such as FODMAPs, protein structure, dough viscoelasticity and fumonisins. The environmental effects on allergen content are comprehensively covered, as are phenolic compounds and molecular markers. The major quality screening tools and genetic resources are reviewed in depth...
This thorough volume presents a wide range of existing methods, from the very popular to the more exotic, in the area of plant genotyping. Many methods of plant genotyping were initially developed for medical research, but all genotyping methods, if they are to be successful, should be suitable for application across the full range of studies within plant biology, as seen in this collection. Plant genotyping methods herein are based on a variety of assessments, including DNA microarray, with its hundreds of thousands of simultaneous reactions, or separate individual studies of DNA sequencing and fragment analysis, PCR and qPCR, allele-specific molecular probes and primers, digestion with res...