You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.
This book introduces readers to various tools and techniques for the design of precision, miniature products, assemblies and associated manufacturing processes. In particular, it focuses on precision mechanisms, robotic devices and their control strategies, together with case studies. In the context of manufacturing process, the book highlights micro/nano machining/forming processes using non-conventional energy sources such as lasers, EDM (electro-discharge machining), ECM (electrochemical machining), etc. Techniques for achieving optimum performance in process modeling, simulation and optimization are presented. The applications of various research tools such as FEM (finite element method), neural networks, genetic algorithms, etc. to product-process design and optimization are illustrated through case studies. The state-of-the-art material presented here provides valuable directions for product development and future research work in this area. The contents of this book will be of use to researchers and industry professionals alike.
This book presents selected research papers of the AIMTDR 2014 conference on application of laser technology for various manufacturing processes such as cutting, forming, welding, sintering, cladding and micro-machining. State-of-the-art of these technologies in terms of numerical modeling, experimental studies and industrial case studies are presented. This book will enrich the knowledge of budding technocrats, graduate students of mechanical and manufacturing engineering, and researchers working in this area.
This book bridges the gap between the demand for micro-featured components on the one hand, and successful micromachining of miniature products on the other. In addition to covering micromachining in the broader sense, it specifically addresses novel machining strategies implemented in various advanced micromachining processes to improve machining accuracy, energy consumption, component durability, and miniature-scale applicability. The book’s main goal is to present the capabilities of advanced micromachining processes in terms of miniature product manufacturing by highlighting various innovative machining strategies that can be used to augment the production scale and precision alike.
Bridging the gap between the need for micro elements and the profitable microfabrication of goods, this new book provides an informative overview of the electro-micromachining and microfabrication processes, varieties, and important applications. Opening with an overview of a variety of micromachining technologies, with an emphasis on nontraditional approaches and recent advances in each, the volume discusses the ultrasonic micromachining processes for producing a variety of micro-shapes, such as micro-holes, micro-slots, and micro-walls, as well as assisted hybrid micromachining with ultrasonic vibration of the tool or workpiece, all which help to improve precision and to advance research. Computer-aided design and computer-aided manufacturing dental micromachining technologies are discussed. Micro-electrical discharge machining, laser micro grooving, and laser micromachining are among the advanced micro-manufacturing processes addressed as well. The volume also covers the use of an electrochemical micromachining method to improve micro texturing and the use of nano-additives to enhance MQL and micromachining process optimization.
This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.
Fabrication Techniques and Machining Methods of Advanced Composite Materials documents the most current inventive developments in the manufacture and machining of sophisticated composite materials. The utilization of cutting-edge engineering materials with exceptional qualities, such as lightweight and long service life, is necessary for the industry to reduce both energy consumption and production/maintenance costs. It provides scientific and technological insights on the fabrication routes of composites. It covers various applications suitable for the aerospace, nuclear, and medical fields and emphasizes advanced machining techniques. The book also highlights some of the top innovations and advances in the fabrication of advanced composite materials and their processing technologies while targeting the latest applications. This reference book is meant to be used as a one-stop resource for academics and manufacturing experts, engineers in related fields, and academic researchers. It encapsulates the current trends of today's fabrication and machining processes for advanced composite materials.
This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2020) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Maisammaguda, Hyderabad, India, during August 21-22, 2020. It covers topics in the areas of automation, manufacturing technology and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy and energy sustainability.
The key contributions of this conference focused on “3D Printing Multifunctional Materials and Advanced Composites”, “From 3D Printing to Biomedical Applications, ”Ultraprecision Machining of Freeform Surfaced Components and Devices”, “Nanoparticle-Enhanced Fluids” and “Manufacturing Computationally Designed Wearables via 3D Printing”. Keywords: Carbon Fibre Reinforced Thermoplastic, 3D Printing, Laser Melting in a Powder Layer, TiO₂-ABS Composite Filaments, Cutting Tools, Spinning Tool, Cold Plastic Deformation, Ideas Diagram Method, Surface Roughness, Automatic Real-Time Detection, Electrochemical Discharge Drilling, Digital Twins, Metallised Plastic Products, Milling Process, Tube Extrusion, Shear Banding, Laser Machining, Mutually Intersecting Surfaces, ZnMg-Y Biodegradable Alloy, Deep Cryogenic Treatment, Recycled Carbon Fibre, Incremental Deformation, Wear Resistance of Surface Layers, Artificial Intelligence, Digital Modeling, Pressure Pipe, Smart Manufacturing, Noise Reduction, 3D Visualization.