You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This comprehensive text covers the research and development trends in the growing field of aromatic C–H dehydrogenative coupling reactions, leading to different types of heterocycles. The author provides answers to how these coupling reactions occur, what kinds of heterocycles are synthesized, and what their advantages are. The palladium-, rhodium-, iridium-, copper-, cobalt-, ruthenium-, and ferric-catalyzed aromatic C(sp2)–H dehydrogenative cross-coupling reactions are described in detail. A useful reference source for researchers and graduates in the field of heterocyclic chemistry and transition-metal-catalyzed dehydrogenative coupling reactions. Features: Comprehensive volume on the synthesis of benzo-heterocycles via aromatic C(sp2)–H bond activation. Heterocycles are of paramount importance to medicinal chemistry and drug discovery. Provides a comprehensive literature survey on the construction of heterocycles. Reaction procedures and mechanistic explanations are included, which will appeal to those in fine chemicals and pharmaceutical companies.
The book represents the most complete description of the scientific results obtained on a photochemical experiment described 110 years ago by the Italian scientist Emanuele Paternò. This detailed that the photochemical reaction between a carbonyl compound and an alkene gives a corresponding oxetane. This oxetane ring is present in several naturally occurring compounds and bioactive compounds, and can be obtained with high regio- and stereoselectivity.
Presents new methods in scenario thinking, based on a mix of high-level research and top-level consultancy experience. The authors describe the logical bases of a range of scenario methods and provide detailed 'road maps' on how to implement them - together with practical examples of their application.
The Most Detailed Resource Available on Points of Zero ChargeWith their work growing in complexity, chemists involved with surface phenomena-related projects have outgrown the common resources available to them on points of zero charge (PZC) of oxides. Reporting on a limited number of materials in a limited number of scenarios, these resources ofte
In the last two decades, semiconductor quantum dots—small colloidal nanoparticles—have garnered a great deal of scientific interest because of their unique properties. Among nanomaterials, CdTe holds special technological importance as the only known II–VI material that can form conventional p–n junctions. This makes CdTe very important for the development of novel optoelectronic devices such as light-emitting diodes, solar cells, and lasers. Moreover, the demand for water-compatible light emitters and the most common biological buffers give CdTe quantum dots fields a veritable edge in biolabeling and bioimaging. Cadmium Telluride Quantum Dots: Advances and Applications focuses on CdTe quantum dots and addresses their synthesis, assembly, optical properties, and applications in biology and medicine. It makes for a very informative reading for anyone involved in nanotechnology and will also benefit those scientists who are looking for a comprehensive account on the current state of quantum dot–related research.
Magnetic nanocatalysts are an important tool for greener catalytic processes due to the ease of their removal from a reaction medium. This book explores different magnetic nanocatalysts, their use in synthesis, and their recyclability. Topics covered include magnetic nanocatalysts for S-S bond formation, N-hetercycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, and their recyclability.
An indispensable guide for all synthetic chemists who want to learn about the most relevant reactions and reagents employed to synthesize important heterocycles and drugs! The synthesis of natural products, bioactive compounds, pharmaceuticals, and drugs is of fundamental interest in modern organic chemistry. New reagents and reaction methods towards these molecules are being constantly developed. By understanding the mechanisms involved and scope and limitations of each reaction applied, organic chemists can further improve existing reaction protocols and develop novel efficient synthetic routes towards frequently used drugs, such as Aspirin or Penicillin. Applied Organic Chemistry provides...
This timely, one-stop reference is the first on an emerging and interdisciplinary topic. Covering both established and recently developed ligation chemistries, the book is divided into two didactic parts: a section that focuses on the details of bioorthogonal and chemoselective ligation reactions at the level of fundamental organic chemistry, and a section that focuses on applications, particularly in the areas of chemical biology, biomaterials, and bioanalysis, highlighting the capabilities and benefits of the ligation reactions. With chapters authored by outstanding scientists who range from trailblazers in the field to young and emerging leaders, this book on a highly interdisciplinary topic will be of great interest for biochemists, biologists, materials scientists, pharmaceutical chemists, organic chemists, and many others.
Develops scenario planning methods in ways that link scenario analysis to improved decision making, engage time-poor senior decision makers, attenuate decision makers’ tendency to deflect responsibility for bleak, negative scenario outcomes, and enhance causal analysis within scenario-storyline development. What if? Two of the most powerful – and frightening – words in business. Almost as bad as “I didn’t see that coming.” Some things that transform the marketplace overnight come from nowhere. Some things that create potentially critical under-performance are genuinely unforeseeable. Sometimes it is impossible to predict how a change in an organizational strategy will play out. S...
Carbon materials form pores ranging in size and morphology, from micropores of less than 1nm, to macropores of more than 50nm, and from channel-like spaces with homogenous diameters in carbon nanotubes, to round spaces in various fullerene cages, including irregularly-shaped pores in polycrystalline carbon materials. The large quantity and rapid rate of absorption of various molecules made possible by these attributes of carbon materials are now used in the storage of foreign atoms and ions for energy storage, conversion and adsorption, and for environmental remediation. Porous Carbons: Syntheses and Applications focuses on the fabrication and application of porous carbons. It considers fabr...