You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses innovations in the field of Directed Energy (DE) and presents new technologies and innovative approaches for use in energy production for possible Underwater Communication, Directed Energy Weapons Applications and at lower wave energy for Medical Applications as well. In-depth chapters explore the challenges related to the study of energy produced from Scalar Longitudinal Wave (SLW). Topics related to Scalar Longitudinal Waves (SLW) and their various applications in the energy, medical, and military sector are discussed along with principles of Quantum Electrodynamics (QED) and theory, weapon applications of SLW, as well as SLW driven propulsion via an all-electronic engine, and for underwater communications. Scalar Wave Driven Energy Applications offers a unique solution for students, researchers, and engineers seeking a viable alternative to traditional approaches for energy production.
Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This ...
This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required.
This book covers the principles and practices behind the Magnetic Confinement Fusion (MCF) approach to driven new source of energy. All possible technical methods, including well established theoretical research, as well as findings tested in an experimental tokamak reactor, are examined in order to determine how to best achieve breakeven via this pathway to plasma-driven fusion. The author undertakes a life cycle analysis to compare and contrast the efficiency, environmental impacts, and operating costs of plasma-driven MCF fusion against other forms of energy generation currently in widespread use. The associated computer code and numerical analysis are included in the book. No prior knowledge of MCF and no more than basic background in plasma physics is required.
Energy managers need to learn new and diverse ways to approach energy management in their company's assets as technology continues to evolve. Built into one cohesive and fundamental resource, Introduction to Energy Essentials: Insight into Nuclear, Renewable, and Non-Renewable Energies delivers an informative tool to understand the main steps for introducing and maintaining an energy management system (EnMS). Starting with a high-level introduction, the reference then takes a structured approach and dives into different sources of energy along with their contribution to energy efficiency, focusing on nuclear power, renewable and non-renewable energies. Multiple options are further discussed ...
This book provides a practical study of modern heat pipe engineering, discussing how it can be optimized for use on a wider scale. An introduction to operational and design principles, this book offers a review of heat and mass transfer theory relevant to performance, leading into and exploration of the use of heat pipes, particularly in high-heat flux applications and in situations in which there is any combination of non-uniform heat loading, limited airflow over the heat generating components, and space or weight constraints. Key implementation challenges are tackled, including load-balancing, materials characteristics, operating temperature ranges, thermal resistance, and operating orientation. With its presentation of mathematical models to calculate heat transfer limitations and temperature gradient of both high- and low-temperature heat pipes, the book compares calculated results with the available experimental data. It also includes a series of computer programs developed by the author to support presented data, aid design, and predict performance.
This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book’s coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book’s theoretical explanations and step-by-step mathematical solutions to practical implementations.
This book describes the fundamentals and applications of compact heat exchangers in energy generation. The text focuses on their efficiency impacts on power systems, particularly emphasizing alternative energy sources such as Concentrated Solar Power and nuclear plants. The various types of compact heat exchanger surfaces and designs are given thorough consideration before the author turns his attention to describing how these compact heat exchangers can be applied to innovative plant designs, and how to conduct operational and safety analyses to optimize thermal efficiency. The book is written at an undergraduate level, but will be useful to practicing engineers and scientists as well.
This book provides a solid foundation for understanding radar energy warfare and stealth technology. The book covers the fundamentals of radar before moving on to more advanced topics, including electronic counter and electronic counter-counter measures, radar absorbing materials, radar cross section, and the science of stealth technology. A final section provides an introduction to Luneberg lens reflectors. The book will provide scientists, engineers, and students with valuable guidance on the fundamentals needed to understand state-of-the-art radar energy warfare and stealth technology research and applications.
This book looks at Generation IV (GEN IV) nuclear reactor design and the technology known as nuclear micro reactors that is currently under development. Coverage includes the advantages of nuclear micro reactor applications as sources of renewable energy, their use in military applications and Department of Defense requirements, and the nuclear industry’s trend toward the design of small and micro reactors. Nuclear micro reactor safety, security issues, and cost concerns are also explored. The book will provide scientists, engineers, and students with valuable guidance on the fundamentals needed to understand the research and development of the next generation of nuclear technologies.