You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hydrogen, Batteries and Fuel Cells provides the science necessary to understand these important areas, considering theory and practice, practical problem-solving, descriptions of bottlenecks, and future energy system applications. The title covers hydrogen as an energy carrier, including its production and storage; the application and analysis of electrochemical devices, such as batteries, fuel cells and electrolyzers; and the modeling and thermal management of momentum, heat, mass and charge transport phenomena. This book offers fundamental and integrated coverage on these topics that is critical to the development of future energy systems. - Combines coverage of hydrogen, batteries and fuel cells in the context of future energy systems - Provides the fundamental science needed to understand future energy systems in theory and practice - Gives examples of problems and solutions in the use of hydrogen, batteries and fuel cells - Considers basic issues in understanding hydrogen and electrochemical devices - Describes methods for modeling and thermal management in future energy systems
Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms
Plate-and-frame heat exchangers (PHEs) are used in many different processes at a broad range of temperatures and with a variety of substances. Research into PHEs has increased considerably in recent years and this is a compilation of knowledge on the subject. Containing invited contributions from prominent and active investigators in the area, it should enable graduate students, researchers, and research and development engineers in industry to achieve a better understanding of transport processes. Some guidelines for design and development are also included.
Heat Transfer in Aerospace Applications is the first book to provide an overall description of various heat transfer issues of relevance for aerospace applications. The book contains chapters relating to convection cooling, heat pipes, ablation, heat transfer at high velocity, low pressure and microgravity, aircraft heat exchangers, fuel cells, and cryogenic cooling systems. Chapters specific to low density heat transfer (4) and microgravity heat transfer (9) are newer subjects which have not been previously covered. The book takes a basic engineering approach by including correlations and examples that an engineer needs during the initial phases of vehicle design or to quickly analyze and s...
In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems.
Augmentation of heat transfer is important in energy conservation and developing sustainable energy systems. This book provides the science necessary to understand the basics of heat transfer augmentation in single-phase engineering systems. It considers theory and practice including computational and experimental procedures, evaluation techniques for performance, and new trends. Several applications of augmentation methods like surface modification, introduction of vortex flow and impinging jets, opportunities of ultrasound and magnetic fields, pulsatile flows, heat exchangers, and nanofluids are provided. Details of basic phenomena and mechanisms are highlighted. Key features: Provides the...
In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems.
This issue of the 2006 Fuel Cell Seminar, held in Honolulu, Hawaii in 2006, marks the 30th Anniversary of the seminar, and contains papers dealing with stationary fuel cell systems, technology development, demonstration, and commercialization of fuel cells. Major topic of discussions throughout the three oral sessions and poster sessions were stationary fuel cell systems, hydrogen systems, and their efficient use as backup systems. Their use as alternative energies and portable fuel cells were also discussed.
The application of heat is both an important method of preserving foods and a means of developing texture, flavour and colour. It has long been recognised that thermal technologies must ensure the safety of food without compromising food quality. Improving the thermal processing of foods summarises key research both on improving particular thermal processing techniques and measuring their effectiveness.Part one examines how best to optimise thermal processes, with chapters addressing safety and quality, efficiency and productivity and the application of computational fluid dynamics. Part two focuses on developments in technologies for sterilisation and pasteurisation with chapters on modelli...
This Special Issue of Energies has emerged as a result of the 1st International Conference on Nanofluids (https://icnf2019.com/), which was organized under the auspices of Nanouptake COST Action (Overcoming Barriers to Nanofluids Market Uptake, http://www.nanouptake.eu/) in Castelló (Spain), in June 2019. The foci of ICNf2019 were the production and the characterisation of nanofluids for different areas of applications in the energy fields, namely heat transfer, storage of thermal energy, boiling, and solar systems, as well as industrial applications and health and safety issues. The first conference edition on this topic gathered more than 200 participants from 45 different countries. More...