Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Data Analytics with Hadoop
  • Language: en
  • Pages: 301

Data Analytics with Hadoop

Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical pr...

Practical Data Science Cookbook
  • Language: en
  • Pages: 428

Practical Data Science Cookbook

Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning ...

Data Analytics with Hadoop
  • Language: en
  • Pages: 288

Data Analytics with Hadoop

Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical pr...

Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced
  • Language: en
  • Pages: 2653

Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced

Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link.

Intelligence analysis in social media
  • Language: en
  • Pages: 174

Intelligence analysis in social media

  • Type: Book
  • -
  • Published: 2021-02-28
  • -
  • Publisher: Emil Girdan

The global security environment, dominated and dependent on information and communication technology, generates an accumulation of disruptive factors for society. This volume, in direct accordance with technological developments that have facilitated information avalanche and (anonymous) communication, has required interdisciplinary research in areas such as: psychology, sociology, computer science, social media communication and legislation. The research aims to establish whether social media platforms, through the actions they facilitate, can pose risks and threats to national security and to identify premises in order to stimulate strategies that should be followed to avoid transforming v...

Practical Statistics for Data Scientists
  • Language: en
  • Pages: 317

Practical Statistics for Data Scientists

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why ...

Python: End-to-end Data Analysis
  • Language: en
  • Pages: 911

Python: End-to-end Data Analysis

Leverage the power of Python to clean, scrape, analyze, and visualize your data About This Book Clean, format, and explore your data using the popular Python libraries and get valuable insights from it Analyze big data sets; create attractive visualizations; manipulate and process various data types using NumPy, SciPy, and matplotlib; and more Packed with easy-to-follow examples to develop advanced computational skills for the analysis of complex data Who This Book Is For This course is for developers, analysts, and data scientists who want to learn data analysis from scratch. This course will provide you with a solid foundation from which to analyze data with varying complexity. A working k...

Applied Text Analysis with Python
  • Language: en
  • Pages: 328

Applied Text Analysis with Python

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, ...

The Data Science Design Manual
  • Language: en
  • Pages: 456

The Data Science Design Manual

  • Type: Book
  • -
  • Published: 2017-07-01
  • -
  • Publisher: Springer

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy...