Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Parabolic Equations in Biology
  • Language: en
  • Pages: 204

Parabolic Equations in Biology

  • Type: Book
  • -
  • Published: 2015-09-09
  • -
  • Publisher: Springer

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

The Mathematics of Mechanobiology
  • Language: en
  • Pages: 217

The Mathematics of Mechanobiology

This book presents the state of the art in mathematical research on modelling the mechanics of biological systems – a science at the intersection between biology, mechanics and mathematics known as mechanobiology. The book gathers comprehensive surveys of the most significant areas of mechanobiology: cell motility and locomotion by shape control (Antonio DeSimone); models of cell motion and tissue growth (Benoît Perthame); numerical simulation of cardiac electromechanics (Alfio Quarteroni); and power-stroke-driven muscle contraction (Lev Truskinovsky). Each section is self-contained in terms of the biomechanical background, and the content is accessible to all readers with a basic understanding of differential equations and numerical analysis. The book disentangles the phenomenological complexity of the biomechanical problems, while at the same time addressing the mathematical complexity with invaluable clarity. The book is intended for a wide audience, in particular graduate students and applied mathematicians interested in entering this fascinating field.

Transport Equations in Biology
  • Language: en
  • Pages: 206

Transport Equations in Biology

This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.

An Introduction to Recent Developments in Theory and Numerics for Conservation Laws
  • Language: en
  • Pages: 295

An Introduction to Recent Developments in Theory and Numerics for Conservation Laws

The book concerns theoretical and numerical aspects of systems of conservation laws, which can be considered as a mathematical model for the flows of inviscid compressible fluids. Five leading specialists in this area give an overview of the recent results, which include: kinetic methods, non-classical shock waves, viscosity and relaxation methods, a-posteriori error estimates, numerical schemes of higher order on unstructured grids in 3-D, preconditioning and symmetrization of the Euler and Navier-Stokes equations. This book will prove to be very useful for scientists working in mathematics, computational fluid mechanics, aerodynamics and astrophysics, as well as for graduate students, who want to learn about new developments in this area.

The Mathematics of Darwin’s Legacy
  • Language: en
  • Pages: 298

The Mathematics of Darwin’s Legacy

The book presents a general overview of mathematical models in the context of evolution. It covers a wide range of topics such as population genetics, population dynamics, speciation, adaptive dynamics, game theory, kin selection, and stochastic processes. Written by leading scientists working at the interface between evolutionary biology and mathematics the book is the outcome of a conference commemorating Charles Darwin's 200th birthday, and the 150th anniversary of the first publication of his book "On the origin of species". Its chapters vary in format between general introductory and state-of-the-art research texts in biomathematics, in this way addressing both students and researchers in mathematics, biology and related fields. Mathematicians looking for new problems as well as biologists looking for rigorous description of population dynamics will find this book fundamental.

Hyperbolic Problems: Theory, Numerics, Applications
  • Language: en
  • Pages: 946

Hyperbolic Problems: Theory, Numerics, Applications

The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.

Stochastic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 290

Stochastic Analysis and Partial Differential Equations

This book is a collection of original research papers and expository articles from the scientific program of the 2004-05 Emphasis Year on Stochastic Analysis and Partial Differential Equations at Northwestern University. Many well-known mathematicians attended the events and submitted their contributions for this volume. Topics from stochastic analysis discussed in this volume include stochastic analysis of turbulence, Markov processes, microscopic lattice dynamics, microscopic interacting particle systems, and stochastic analysis on manifolds. Topics from partial differential equations include kinetic equations, hyperbolic conservation laws, Navier-Stokes equations, and Hamilton-Jacobi equa...

Handbook of Differential Equations: Evolutionary Equations
  • Language: en
  • Pages: 653

Handbook of Differential Equations: Evolutionary Equations

  • Type: Book
  • -
  • Published: 2011-09-22
  • -
  • Publisher: Elsevier

The material collected in this volume reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear parabolic PDE's.Articles will highlight the present as well as expected future directions of development of the field with particular emphasis on applications. The article by Ambrosio and Savaré discussesthe most recent development in the theory of gradient flow of probability measures. After an introduction reviewing the properties of the Wasserstein space and corresponding subdifferential calculus, applications are given to evolutionarypartial differential equations. The contribution of Herrero provide...

Dispersive Transport Equations and Multiscale Models
  • Language: en
  • Pages: 297

Dispersive Transport Equations and Multiscale Models

IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wdie range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.

Imaging, Multi-scale and High Contrast Partial Differential Equations
  • Language: en
  • Pages: 160

Imaging, Multi-scale and High Contrast Partial Differential Equations

This volume contains the proceedings of the Seoul ICM 2014 Satellite Conference on Imaging, Multi-scale and High-Contrast PDEs, held from August 7-9, 2014, in Daejeon, Korea. The mathematical analysis of partial differential equations modelling materials, or tissues, presenting multiple scales has been a very active area of research. The study of the corresponding imaging or reconstruction problem is a more recent area. If the material parameters of the partial differential equation present high contrast ratio, then the solution to the PDE becomes particularly challenging to analyze and compute. On the other hand, imaging in highly heterogeneous media poses significant challenges to the math...