You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on ?Nanoscale Material Interfaces: Experiment, Theory and Simulation'' from November 2004 to January 2005. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field.This invaluable volume collects the expanded lecture notes of four of those self-contained tutorials. The topics covered include dynamics in different models of domain coarsening and coagulation and their mathematical analysis in material sciences; a mathematical and computational study for quantized vortices in the celebrated Ginzburg?Landau models of superconductivity and the mean field Gross?Pitaevskii equations of superfluidity; the nonlinear Schr”dinger equation and applications in Bose?Einstein condensation and plasma physics as well as their efficient and accurate computation; and finally, an introduction to constitutive modeling of macromolecular fluids within the framework of the kinetic theory.This volume serves to inspire graduate students and researchers who will embark upon original research work in these fields.
The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on OC Mathematical Theory and Numerical Methods for Computational Materials Simulation and DesignOCO from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.
The thematic program Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications was held at the Institute for Mathematical Sciences at the National University of Singapore, from September 2019 to March 2020. Leading experts presented tutorials and special lectures geared towards the participating graduate students and junior researchers.Readers will find in this significant volume four expanded lecture notes with self-contained tutorials on modeling and simulation for collective dynamics including individual and population approaches for population dynamics in mathematical biology, collective behaviors for Lohe type aggregation models, mean-field particle swarm optimization, and consensus-based optimization and ensemble Kalman inversion for global optimization problems with constraints.This volume serves to inspire graduate students and researchers who will embark into original research work in kinetic models for collective dynamics and their applications.
Density Functional Theory (DFT) first established it's theoretical footing in the 1960s from the framework of Hohenberg-Kohn theorems. DFT has since seen much development in evaluation techniques as well as application in solving problems in Physics, Mathematics and Chemistry.This review volume, part of the IMS Lecture Notes Series, is a collection of contributions from the September 2019 Workshop on the topic, held in the Institute for Mathematical Sciences, National University of Singapore.With contributions from prominent Mathematicians, Physicists, and Chemists, the volume is a blend of comprehensive review articles on the Mathematical and the Physicochemical aspects of DFT and shorter contributions on particular themes, including numerical implementations.The book will be a useful reference for advanced undergraduate and postgraduate students as well as researchers.
This volume results from two programs that took place at the Institute for Mathematical Sciences at the National University of Singapore: Aspects of Computation — in Celebration of the Research Work of Professor Rod Downey (21 August to 15 September 2017) and Automata Theory and Applications: Games, Learning and Structures (20-24 September 2021).The first program was dedicated to the research work of Rodney G. Downey, in celebration of his 60th birthday. The second program covered automata theory whereby researchers investigate the other end of computation, namely the computation with finite automata, and the intermediate level of languages in the Chomsky hierarchy (like context-free and context-sensitive languages).This volume contains 17 contributions reflecting the current state-of-art in the fields of the two programs.
This important book consists of surveys of high-frequency financial data analysis and econometric forecasting, written by pioneers in these areas including Nobel laureate Lawrence Klein. Some of the chapters were presented as tutorials to an audience in the Econometric Forecasting and High-Frequency Data Analysis Workshop at the Institute for Mathematical Science, National University of Singapore in May 2006. They will be of interest to researchers working in macroeconometrics as well as financial econometrics. Moreover, readers will find these chapters useful as a guide to the literature as well as suggestions for future research.
This book is an indispensable guide for anyone seeking to familarize themselves with research in braid groups, configuration spaces and their applications. Starting at the beginning, and assuming only basic topology and group theory, the volume's noted expositors take the reader through the fundamental theory and on to current research and applications in fields as varied as astrophysics, cryptography and robotics. As leading researchers themselves, the authors write enthusiastically about their topics, and include many striking illustrations. The chapters have their origins in tutorials given at a Summer School on Braids, at the National University of Singapore's Institute for Mathematical Sciences in June 2007, to an audience of more than thirty international graduate students.
The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. Transport Phenomena and Kinetic Theory is an excellent self-study reference for graduate students, researchers, and practitioners working in pure and applied mathematics, mathematical physics, and engineering. The work may be used in courses or seminars on selected topics in transport phenomena or applications of the Boltzmann equation.
This volume is based on lectures given during the program Complex Quantum Systems held at the National University of Singapore's Institute for Mathematical Sciences from 17 February to 27 March 2010. It guides the reader through two introductory expositions on large Coulomb systems to five of the most important developments in the field: derivation of mean field equations, derivation of effective Hamiltonians, alternative high precision methods in quantum chemistry, modern many body methods originating from quantum information, and OCo the most complex OCo semirelativistic quantum electrodynamics.These introductions are written by leaders in their fields; amongst them are Volker Bach, Rafael Benguria, Thomas Chen, and Jan Philip Solovej. Together, they fill a gap between current textbooks and the vast modern literature on complex quantum systems.
This volume is a collection of chapters that present several key principles and theories, as well as their potential uses in the development of mathematical models in areas like waves, thermodynamic, electromagnetics, fluid dynamics, and catastrophes. The techniques and methodologies used in this book, on the other hand, should have a long-term impact and be applicable to a wide range of different topics of study and research. Each chapter should also help readers in gaining a better knowledge of the underlying and connected concepts. The companion volume (Contemporary Mathematics, Volume 787) is devoted to theory and application.