Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to the Calculus of Variations
  • Language: en
  • Pages: 241

Introduction to the Calculus of Variations

The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.

Direct Methods in the Calculus of Variations
  • Language: en
  • Pages: 312

Direct Methods in the Calculus of Variations

In recent years there has been a considerable renewal of interest in the clas sical problems of the calculus of variations, both from the point of view of mathematics and of applications. Some of the most powerful tools for proving existence of minima for such problems are known as direct methods. They are often the only available ones, particularly for vectorial problems. It is the aim of this book to present them. These methods were introduced by Tonelli, following earlier work of Hilbert and Lebesgue. Although there are excellent books on calculus of variations and on direct methods, there are recent important developments which cannot be found in these books; in particular, those dealing...

Mathematical Analysis for Engineers
  • Language: en
  • Pages: 370

Mathematical Analysis for Engineers

This book follows an advanced course in analysis (vector analysis, complex analysis and Fourier analysis) for engineering students, but can also be useful, as a complement to a more theoretical course, to mathematics and physics students. The first three parts of the book represent the theoretical aspect and are independent of each other. The fourth part gives detailed solutions to all exercises that are proposed in the first three parts. Foreword Foreword (71 KB) Sample Chapter(s) Chapter 1: Differential Operators of Mathematical Physics (272 KB) Chapter 9: Holomorphic functions and Cauchy–Riemann equations (248 KB) Chapter 14: Fourier series (281 KB) Request Inspection Copy Contents: Vec...

The Pullback Equation for Differential Forms
  • Language: en
  • Pages: 434

The Pullback Equation for Differential Forms

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classic...

Vector-Valued Partial Differential Equations and Applications
  • Language: en
  • Pages: 256

Vector-Valued Partial Differential Equations and Applications

  • Type: Book
  • -
  • Published: 2017-05-29
  • -
  • Publisher: Springer

Collating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Müller), and Aspects of PDEs related to fluid flows (Vladimir Sverák). These lectures are addressed to graduate students and researchers in the field.

Implicit Partial Differential Equations
  • Language: en
  • Pages: 278

Implicit Partial Differential Equations

Nonlinear partial differential equations has become one of the main tools of mod ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematic...

Introduction to the Calculus of Variations
  • Language: en
  • Pages: 484

Introduction to the Calculus of Variations

Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.

Elliptic Partial Differential Equations
  • Language: en
  • Pages: 204

Elliptic Partial Differential Equations

Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem
  • Language: en
  • Pages: 473

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

  • Type: Book
  • -
  • Published: 2015-11-04
  • -
  • Publisher: SIAM

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Calculus of Variations and Nonlinear Partial Differential Equations
  • Language: en
  • Pages: 213

Calculus of Variations and Nonlinear Partial Differential Equations

  • Type: Book
  • -
  • Published: 2007-12-10
  • -
  • Publisher: Springer

This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro, Italy in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. Coverage includes transport equations for nonsmooth vector fields, viscosity methods for the infinite Laplacian, and geometrical aspects of symmetrization.