You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Using electrochemical impedance spectroscopy in a broad range of applications This book provides the background and training suitable for application of impedance spectroscopy to varied applications, such as corrosion, biomedical devices, semiconductors and solid-state devices, sensors, batteries, fuel cells, electrochemical capacitors, dielectric measurements, coatings, electrochromic materials, analytical chemistry, and imaging. The emphasis is on generally applicable fundamentals rather than on detailed treatment of applications. With numerous illustrative examples showing how these principles are applied to common impedance problems, Electrochemical Impedance Spectroscopy is ideal either...
Provides fundamentals needed to apply impedance spectroscopy to a broad range of applications with emphasis on obtaining physically meaningful insights from measurements. Emphasizes fundamentals applicable to a broad range of applications including corrosion, biomedical devices, semiconductors, batteries, fuel cells, coatings, analytical chemistry, electrocatalysis, materials, and sensors Provides illustrative examples throughout the text that show how the principles are applied to common impedance problems New Edition has improved pedagogy, with more than twice the number of examples New Edition has more in-depth treatment of background material needed to understand impedance spectroscopy, including electrochemistry, complex variables, and differential equations New Edition includes expanded treatment of the influence of mass transport and kinetics and reflects recent advances in understanding frequency dispersion and constant-phase elements
The present volume is the second in a two-volume set dealing with modelling and numerical simulations in electrochemistry. Emphasis is placed on the aspect of nanoelectrochemical issues. It seems appropriate at this juncture to mention the n- growing body of opinion in some circles that George Box was right when he stated, three decades ago, that “All models are wrong, but some are useful”. Actually, when the statement itself was made it would have been more appropriate to say that “All models are inaccurate but most are useful nonetheless”. At present, however, the statement, as it was made, is far more appropriate and closer to the facts than ever before. Currently, we are in the m...
ATMOSPHERIC CORROSION Presents a comprehensive look at atmospheric corrosion, combining expertise in corrosion science and atmospheric chemistry Atmospheric corrosion has been a subject of engineering study, largely empirical, for nearly a century. Scientists came to the field rather later on and had considerable difficulty bringing their arsenal of tools to bear on the problem. Atmospheric corrosion was traditionally studied by specialists in corrosion having little knowledge of atmospheric chemistry, history, or prospects. Atmospheric Corrosion provides a combined approach bringing together experimental corrosion and atmospheric chemistry. The second edition expands on this approach by inc...
This book is a tribute to Professor Abdelhak Ambari and brings together ten chapters written by colleagues who were fortunate enough to work with him. The contributions presented in this book cover the research themes in which Abdelhak Ambari was interested, and to which he made valuable experimental and theoretical contributions. For example: rheology of complex fluids and polymers; hydrodynamic interactions; flows at low Reynolds numbers; characterization of porous media; hydrodynamic instabilities and solid mechanics; electrochemical metrology. Some Complex Phenomena in Fluid and Solid Mechanics is aimed at a wide community of readers wishing to delve deeper into these scientific themes: since it is oriented toward the world of research, it will be a valuable tool for doctoral students and beyond. The book also provides undergraduate and graduate students with a good introduction to the techniques and approaches developed in fundamental and applied research in the fields of fluid mechanics, solid mechanics and instrumentation.
The new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basics of thermodynamics and electrode kinetics to transport phenomena in electrolytes, metals, and semiconductors. Newly updated and expanded, the Third Edition covers important new treatments, ideas, and technologies while also increasing the book's accessibility for readers in related fields. Rigorous and complete presentation of the fundamental concepts In-depth examples applying the concepts to real-life design problems Homework problems ranging from the reinforcing to the highly thought-provoking Extensive bibliography giving both the historical development of the field and references for the practicing electrochemist.
Presents opportunities for making significant improvements in preventing harmful effects that can be caused by corrosion Describes concepts of molecular modeling in the context of materials corrosion Includes recent examples of applications of molecular modeling to corrosion phenomena throughout the text Details how molecular modeling can give insights into the multitude of interconnected and complex processes that comprise the corrosion of metals Covered applications include diffusion and electron transfer at metal/electrolyte interfaces, Monte Carlo simulations of corrosion, corrosion inhibition, interrogating surface chemistry, and properties of passive films Presents current challenges and likely developments in this field for the future
This book serves as a reference for engineers, scientists, and students concerned with the use of materials in applications where reliability and resistance to corrosion are important. It updates the coverage of its predecessor, including coverage of: corrosion rates of steel in major river systems and atmospheric corrosion rates, the corrosion behavior of materials such as weathering steels and newer stainless alloys, and the corrosion behavior and engineering approaches to corrosion control for nonmetallic materials. New chapters include: high-temperature oxidation of metals and alloys, nanomaterials, and dental materials, anodic protection. Also featured are chapters dealing with standards for corrosion testing, microbiological corrosion, and electrochemical noise.
In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.