Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Theory of Besov Spaces
  • Language: en
  • Pages: 964

Theory of Besov Spaces

  • Type: Book
  • -
  • Published: 2018-11-04
  • -
  • Publisher: Springer

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces a...

Wavelets, Approximation, and Statistical Applications
  • Language: en
  • Pages: 276

Wavelets, Approximation, and Statistical Applications

The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It i...

An Introduction to Sobolev Spaces and Interpolation Spaces
  • Language: en
  • Pages: 219

An Introduction to Sobolev Spaces and Interpolation Spaces

After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.

Beyond Sobolev and Besov
  • Language: en
  • Pages: 339

Beyond Sobolev and Besov

This book investigates the close relation between quite sophisticated function spaces, the regularity of solutions of partial differential equations (PDEs) in these spaces and the link with the numerical solution of such PDEs. It consists of three parts. Part I, the introduction, provides a quick guide to function spaces and the general concepts needed. Part II is the heart of the monograph and deals with the regularity of solutions in Besov and fractional Sobolev spaces. In particular, it studies regularity estimates of PDEs of elliptic, parabolic and hyperbolic type on non smooth domains. Linear as well as nonlinear equations are considered and special attention is paid to PDEs of paraboli...

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori
  • Language: en
  • Pages: 130

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori

This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative -torus (with a skew symmetric real -matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces.

Morrey and Campanato Meet Besov, Lizorkin and Triebel
  • Language: en
  • Pages: 295

Morrey and Campanato Meet Besov, Lizorkin and Triebel

During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.

Theory of Function Spaces
  • Language: en
  • Pages: 286

Theory of Function Spaces

The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where ‐∞s∞ and 0p,q≤∞, which include many classical and modern spaces, such as Hölder spaces, Zygmund classes, Sobolev spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and spaces of BMO-type. It is the main aim of this book to give a unified treatment of the corresponding spaces on the Euclidean n-space Rsubn

Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
  • Language: en
  • Pages: 112

Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs

View the abstract.

Function Spaces and Potential Theory
  • Language: en
  • Pages: 372

Function Spaces and Potential Theory

"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society

New Thoughts on Besov Spaces
  • Language: en
  • Pages: 450

New Thoughts on Besov Spaces

  • Type: Book
  • -
  • Published: 1976
  • -
  • Publisher: Unknown

None