You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first book to bring together in one place the techniques for regression curve smoothing involving more than one variable.
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.
The authors have cleverly used exercises and their solutions to explore the concepts of multivariate data analysis. Broken down into three sections, this book has been structured to allow students in economics and finance to work their way through a well formulated exploration of this core topic. The first part of this book is devoted to graphical techniques. The second deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The final section contains a wide variety of exercises in applied multivariate data analysis.
Financial Engineers
Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.
Recent years have witnessed a growing importance of quantitative methods in both financial research and industry. This development requires the use of advanced techniques on a theoretical and applied level, especially when it comes to the quantification of risk and the valuation of modern financial products. Applied Quantitative Finance (2nd edition) provides a comprehensive and state-of-the-art treatment of cutting-edge topics and methods. It provides solutions to and presents theoretical developments in many practical problems such as risk management, pricing of credit derivatives, quantification of volatility and copula modelling. The synthesis of theory and practice supported by computat...
Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gi...
Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.
This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students’ knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc.