You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a remarkable collection of chapters covering a wider range of topics, including unsupervised text mining, anomaly and Intrusion Detection, Self-reconfiguring Robotics, application of Fuzzy Logic to development aid, Design and Optimization, Context-Aware Reasoning, DNA Sequence Assembly and Multilayer Perceptron Networks. The twenty-one chapters present extended results from the SAI Intelligent Systems Conference (IntelliSys) 2015 and have been selected based on high recommendations during IntelliSys 2015 review process. This book presents innovative research and development carried out presently in fields of knowledge representation and reasoning, machine learning, and particularly in intelligent systems in a more broad sense. It provides state - of - the - art intelligent methods and techniques for solving real world problems along with a vision of the future research.
This book constitutes the refereed proceedings of the 36th German Conference on Pattern Recognition, GCPR 2014, held in Münster, Germany, in September 2014. The 58 revised full papers and 8 short papers were carefully reviewed and selected from 153 submissions. The papers are organized in topical sections on variational models for depth and flow, reconstruction, bio-informatics, deep learning and segmentation, feature computation, video interpretation, segmentation and labeling, image processing and analysis, human pose and people tracking, interpolation and inpainting.
On behalf of the organizing committee, we would like to welcome you to Da- nd stadt and DAGM 2010,the 32 Annual Symposium of the German Association for Pattern Recognition. The technical program covered all aspects of pattern recognition and, to name only a few areas, ranged from 3D reconstruction, to object recognition and medical applications. The result is re?ected in these proceedings, which contain the papers presented at DAGM 2010. Our call for papers resulted in 134 submissions from institutions in 21 countries. Each paper underwent a rigorous reviewing process and was assigned to at least three program committee m- bers for review. The reviewing phase was followed by a discussion pha...
This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced.
This book constitutes revised selected papers from the 13th International Conference on Critical Information Infrastructures Security, CRITIS 2018, held in Kaunas, Lithuania, in September 2018.The 16 full papers and 3 short papers presented were carefully reviewed and selected from 61 submissions. They are grouped in the following topical sections: advanced analysis of critical energy systems, strengthening urban resilience, securing internet of things and industrial control systems, need and tool sets for industrial control system security, and advancements in governance and resilience of critical infrastructures.
Remarkable progress in eye-tracking technologies opened the way to design novel attention-based intelligent user interfaces, and highlighted the importance of better understanding of eye-gaze in human-computer interaction and human-human communication. For instance, a user’s focus of attention is useful in interpreting the user’s intentions, their understanding of the conversation, and their attitude towards the conversation. In human face-to-face communication, eye gaze plays an important role in floor management, grounding, and engagement in conversation. Eye Gaze in Intelligent User Interfaces draws on ideas from a number of contributors working on how attentional information can be a...
The availability of video data is an opportunity and a challenge for law enforcement agencies. Face recognition methods can play a key role in the automated search for persons in the data. This work targets efficient representations of low-quality face sequences to enable fast and accurate face search. Novel concepts for multi-scale analysis, dataset augmentation, CNN loss function, and sequence description lead to improvements over state-of-the-art methods on surveillance video footage.
Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.
The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion.
Diffractive lens arrays are proposed in this work for application in reflected-light confocal microscopes. They have overcome the limitations between fields of view and resolution of traditional objectives. Experiments of multi-spot confocal imaging in surface metrology and fluorescence microscopy have been demonstrated based on the proposed concepts, which have shown capabilities of high-resolution measurement over a large area.