You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced.
The availability of video data is an opportunity and a challenge for law enforcement agencies. Face recognition methods can play a key role in the automated search for persons in the data. This work targets efficient representations of low-quality face sequences to enable fast and accurate face search. Novel concepts for multi-scale analysis, dataset augmentation, CNN loss function, and sequence description lead to improvements over state-of-the-art methods on surveillance video footage.
The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion.
An adaptive microscope with axial chromatic encoding is designed and developed, namely the AdaScope. With the ability to confocally address any locations within the measurement volume, the AdaScope provides the hardware foundation for a cascade measurement strategy to be developed, dramatically accelerating the speed of 3D confocal microscopy.
Diffractive lens arrays are proposed in this work for application in reflected-light confocal microscopes. They have overcome the limitations between fields of view and resolution of traditional objectives. Experiments of multi-spot confocal imaging in surface metrology and fluorescence microscopy have been demonstrated based on the proposed concepts, which have shown capabilities of high-resolution measurement over a large area.
Unmanned Aerial Vehicles (UAVs) equipped with video cameras are a flexible support to ensure civil and military safety and security. In this thesis, a video processing chain is presented for moving object detection in aerial video surveillance. A Track-Before-Detect (TBD) algorithm is applied to detect motion that is independent of the camera motion. Novel robust and fast object detection and segmentation approaches improve the baseline TBD and outperform current state-of-the-art methods.
Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.
In dieser Arbeit wird ein Ansatz entwickelt, um eine automatische Anpassung des Verhaltens von Produktionsanlagen an wechselnde Aufträge und Rahmenbedingungen zu erreichen. Dabei kommt das Prinzip der Selbstorganisation durch verteilte Planung zum Einsatz. - Most production processes are rigid not only by way of the physical layout of machines and their integration, but also by the custom programming of the control logic for the integration of components to a production systems. Changes are time- and resource-expensive. This makes the production of small lot sizes of customized products economically challenging. This work develops solutions for the automated adaptation of production systems based on self-organisation and distributed planning.
In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria.