Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Combinatorial Extremization: In Mathematical Olympiad And Competitions
  • Language: en
  • Pages: 230

Combinatorial Extremization: In Mathematical Olympiad And Competitions

In China, lots of excellent students who are good at maths takes an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they have won the first place almost every year.The author is one of the coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book elaborates on methods of discrete extremization, such as inequality control, repeated extremum, partial adjustment, exploiting symmetry, polishing transform, space estimates, etc.

Problem Solving Methods And Strategies In High School Mathematical Competitions
  • Language: en
  • Pages: 301

Problem Solving Methods And Strategies In High School Mathematical Competitions

This book not only introduces important methods and strategies for solving problems in mathematics competition, but also discusses the basic principles behind them and the mathematical way of thinking.It may be used as a valuable textbook for a mathematics competition course or a mathematics education course at undergraduate and graduate level. It can also serve as a reference book for students and teachers in primary and secondary schools.The materials of this book come from a book series of Mathematical Olympiad Competition. It is a collection of problems and solutions of the major mathematical competitions in China. The translation is done by Yongming Liu.The authors are mathematical competition teachers and researchers, many China's national team coaches and national team leaders. Many techniques and approaches in the book come directly from their own research results.

Mathematical Olympiad In China (2021-2022): Problems And Solutions
  • Language: en
  • Pages: 433

Mathematical Olympiad In China (2021-2022): Problems And Solutions

In China, many excellent students in mathematics take an active part in various mathematical contests, and each year, the best six senior high school students are selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years, China's IMO Team has achieved outstanding results — they won first place almost every year.The authors of this book are coaches of the China national team. They are Xiong Bin, Xiao Liang, Yu Hongbing, Yao Yijun, Qu Zhenhua, Li Ting, Ai Yinhua, Wang Bin, Fu Yunhao, He Yijie, Zhang Sihui, Wang Xinmao, Lin Tianqi, Xu Disheng, et al. Those who took part in the translation work are Chen Haoran and Zhao Wei.The materials of this book come from a series of two books (in Chinese) on Forward to IMO: a collection of mathematical Olympiad problems (2021-2022). It is a collection of problems and solutions of the major mathematical competitions in China. It provides a glimpse of how the China national team is selected and formed.

Probability And Expectation: In Mathematical Olympiad And Competitions
  • Language: en
  • Pages: 207

Probability And Expectation: In Mathematical Olympiad And Competitions

In China, lots of excellent students who are good at maths take an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they have won the first place almost every year.The author is one of the senior coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. This book will, in an interesting problem-solving way, explain what probability theory is: its concepts, methods and meanings; particularly, two important concepts — probability and mathematical expectation (briefly expectation) — are emphasized. It consists of 65 problems, appended by 107 exercises and their answers.

Geometric Inequalities: In Mathematical Olympiad And Competitions
  • Language: en
  • Pages: 145

Geometric Inequalities: In Mathematical Olympiad And Competitions

In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they won the first place almost every year.The author is one of the coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book elaborates on Geometric Inequality problems such as inequality for the inscribed quadrilateral, the area inequality for special polygons, linear geometric inequalities, etc.

Hungarian Mathematical Olympiad (1964-1997): Problems And Solutions
  • Language: en
  • Pages: 308

Hungarian Mathematical Olympiad (1964-1997): Problems And Solutions

This book is about a famous Hungarian mathematics competition that was founded in 1894, and thus, the oldest mathematics competition for secondary school students organized on a national scale. This book is based on Volumes III and IV of the Hungarian work by János Surányi, covering the years from 1964 to 1997.Hungary, along with Russia, has a well-deserved reputation for proposing important, instructive, and interesting problems. Here, the reader will find a treasure trove of over 100 of them. The solutions are written carefully, giving all the details, and keeping in mind at all times the overall logical structures of the arguments.An outstanding feature of this book is Part II: Discussi...

Solving Problems In Geometry: Insights And Strategies For Mathematical Olympiad And Competitions
  • Language: en
  • Pages: 357

Solving Problems In Geometry: Insights And Strategies For Mathematical Olympiad And Competitions

'This book is a useful reference for faculty members involved in contest preparation or teaching Euclidean geometry at the college level.'MAA ReviewsThis new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems.This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter ...

Mathematical Olympiad In China (2009-2010): Problems And Solutions
  • Language: en
  • Pages: 205

Mathematical Olympiad In China (2009-2010): Problems And Solutions

The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume of comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2009 to 2010. Mathematical Olympiad problems with solutions for the years 2002-2008 appear in an earlier volume, Mathematical Olympiad in China.

Mathematical Olympiad in China (2007-2008)
  • Language: en
  • Pages: 221

Mathematical Olympiad in China (2007-2008)

The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2006 to 2008. Mathematical Olympiad problems with solutions for the years 2002?2006 appear in an earlier volume, Mathematical Olympiad in China.

Problems And Solutions In Mathematical Olympiad (Secondary 2)
  • Language: en
  • Pages: 401

Problems And Solutions In Mathematical Olympiad (Secondary 2)

The series is edited by the head coaches of China's IMO National Team. Each volume, catering to different grades, is contributed by the senior coaches of the IMO National Team. The Chinese edition has won the award of Top 50 Most Influential Educational Brands in China.The series is created in line with the mathematics cognition and intellectual development levels of the students in the corresponding grades. All hot mathematics topics of the competition are included in the volumes and are organized into chapters where concepts and methods are gradually introduced to equip the students with necessary knowledge until they can finally reach the competition level.In each chapter, well-designed problems including those collected from real competitions are provided so that the students can apply the skills and strategies they have learned to solve these problems. Detailed solutions are provided selectively. As a feature of the series, we also include some solutions generously offered by the members of Chinese national team and national training team.