You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As conventional memory technologies such as DRAM and Flash run into scaling challenges, architects and system designers are forced to look at alternative technologies for building future computer systems. This synthesis lecture begins by listing the requirements for a next generation memory technology and briefly surveys the landscape of novel non-volatile memories. Among these, Phase Change Memory (PCM) is emerging as a leading contender, and the authors discuss the material, device, and circuit advances underlying this exciting technology. The lecture then describes architectural solutions to enable PCM for main memories. Finally, the authors explore the impact of such byte-addressable non-volatile memories on future storage and system designs. Table of Contents: Next Generation Memory Technologies / Architecting PCM for Main Memories / Tolerating Slow Writes in PCM / Wear Leveling for Durability / Wear Leveling Under Adversarial Settings / Error Resilience in Phase Change Memories / Storage and System Design With Emerging Non-Volatile Memories
Compiling for parallelism is a longstanding topic of compiler research. This book describes the fundamental principles of compiling "regular" numerical programs for parallelism. We begin with an explanation of analyses that allow a compiler to understand the interaction of data reads and writes in different statements and loop iterations during program execution. These analyses include dependence analysis, use-def analysis and pointer analysis. Next, we describe how the results of these analyses are used to enable transformations that make loops more amenable to parallelization, and discuss transformations that expose parallelism to target shared memory multicore and vector processors. We th...
General-purpose graphics processing units (GPGPU) have emerged as an important class of shared memory parallel processing architectures, with widespread deployment in every computer class from high-end supercomputers to embedded mobile platforms. Relative to more traditional multicore systems of today, GPGPUs have distinctly higher degrees of hardware multithreading (hundreds of hardware thread contexts vs. tens), a return to wide vector units (several tens vs. 1-10), memory architectures that deliver higher peak memory bandwidth (hundreds of gigabytes per second vs. tens), and smaller caches/scratchpad memories (less than 1 megabyte vs. 1-10 megabytes). In this book, we provide a high-level...
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
This historical survey of parallel processing from 1980 to 2020 is a follow-up to the authors’ 1981 Tutorial on Parallel Processing, which covered the state of the art in hardware, programming languages, and applications. Here, we cover the evolution of the field since 1980 in: parallel computers, ranging from the Cyber 205 to clusters now approaching an exaflop, to multicore microprocessors, and Graphic Processing Units (GPUs) in commodity personal devices; parallel programming notations such as OpenMP, MPI message passing, and CUDA streaming notation; and seven parallel applications, such as finite element analysis and computer vision. Some things that looked like they would be major tre...
Artificial intelligence has already enabled pivotal advances in diverse fields, yet its impact on computer architecture has only just begun. In particular, recent work has explored broader application to the design, optimization, and simulation of computer architecture. Notably, machine-learning-based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This book reviews the application of machine learning in system-wide simulation and run-time optimization, and in many individual components such as caches/memories, branch predictors, networks-on-chip, and GPUs. The book further analyzes current practice to highlight useful design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly automated computer architecture designs.
Most emerging applications in imaging and machine learning must perform immense amounts of computation while holding to strict limits on energy and power. To meet these goals, architects are building increasingly specialized compute engines tailored for these specific tasks. The resulting computer systems are heterogeneous, containing multiple processing cores with wildly different execution models. Unfortunately, the cost of producing this specialized hardware—and the software to control it—is astronomical. Moreover, the task of porting algorithms to these heterogeneous machines typically requires that the algorithm be partitioned across the machine and rewritten for each specific archi...
As computation continues to move into the cloud, the computing platform of interest no longer resembles a pizza box or a refrigerator, but a warehouse full of computers. These new large datacenters are quite different from traditional hosting facilities of earlier times and cannot be viewed simply as a collection of co-located servers. Large portions of the hardware and software resources in these facilities must work in concert to efficiently deliver good levels of Internet service performance, something that can only be achieved by a holistic approach to their design and deployment. In other words, we must treat the datacenter itself as one massive warehouse-scale computer (WSC). We descri...
With growing interest in computer security and the protection of the code and data which execute on commodity computers, the amount of hardware security features in today's processors has increased significantly over the recent years. No longer of just academic interest, security features inside processors have been embraced by industry as well, with a number of commercial secure processor architectures available today. This book aims to give readers insights into the principles behind the design of academic and commercial secure processor architectures. Secure processor architecture research is concerned with exploring and designing hardware features inside computer processors, features whi...
To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed for FPGA accelerated simulation, survey the state-of-the-art in FPGA-accelerated simulation, and describe in detail selected instances of the described techniques. Table of Contents: Preface / Acknowledgments / Introduction / Simulator Background / Accelerating Computer System Simulators with FPGAs / Simulation Virtualization / Categorizing FPGA-based Simulators / Conclusion / Bibliography / Authors' Biographies