You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Models of dynamical systems are of great importance in almost all fields of science and engineering and specifically in control, signal processing and information science. A model is always only an approximation of a real phenomenon so that having an approximation theory which allows for the analysis of model quality is a substantial concern. The use of rational orthogonal basis functions to represent dynamical systems and stochastic signals can provide such a theory and underpin advanced analysis and efficient modelling. It also has the potential to extend beyond these areas to deal with many problems in circuit theory, telecommunications, systems, control theory and signal processing. Modelling and Identification with Rational Orthogonal Basis Functions affords a self-contained description of the development of the field over the last 15 years, furnishing researchers and practising engineers working with dynamical systems and stochastic processes with a standard reference work.
In this edited collection we commemorate the 60th birthday of Prof. Christopher Byrnes and the retirement of Prof. Anders Lindquist from the Chair of Optimization and Systems Theory at KTH. These papers were presented in part at a 2009 workshop in KTH, Stockholm, honoring the lifetime contributions of Professors Byrnes and Lindquist in various fields of applied mathematics.
This Festschrift is intended as a homage to our esteemed colleague, friend and maestro Giorgio Picci on the occasion of his sixty-?fth birthday. We have knownGiorgiosince our undergraduatestudies at the University of Padova, wherewe?rst experiencedhisfascinatingteachingin theclass ofSystem Identi?cation. While progressing through the PhD program, then continuing to collaborate with him and eventually becoming colleagues, we have had many opportunitiesto appreciate the value of Giorgio as a professor and a scientist, and chie?y as a person. We learned a lot from him and we feel indebted for his scienti?c guidance, his constant support, encouragement and enthusiasm. For these reasons we are pr...
The safe and reliable operation of technical systems is of great significance for the protection of human life and health, the environment, and of the vested economic value. The correct functioning of those systems has a profound impact also on production cost and product quality. The early detection of faults is critical in avoiding performance degradation and damage to the machinery or human life. Accurate diagnosis then helps to make the right decisions on emergency actions and repairs. Fault detection and diagnosis (FDD) has developed into a major area of research, at the intersection of systems and control engineering, artificial intelligence, applied mathematics and statistics, and suc...
The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for con...
Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.
For more than three decades, Anders Lindquist has delivered fundamental cont- butions to the ?elds of systems, signals and control. Throughout this period, four themes can perhaps characterize his interests: Modeling, estimation and ?ltering, feedback and robust control. His contributions to modeling include seminal work on the role of splitting subspaces in stochastic realization theory, on the partial realization problem for both deterministic and stochastic systems, on the solution of the rational covariance extension problem and on system identi?cation. His contributions to ?ltering and estimation include the development of fast ?ltering algorithms, leading to a nonlinear dynamical syste...
Due to their relevance in systems analysis and controller design, this thesis considers the problem of determining input-output properties of linear time-invariant systems. While obtaining a suitable mathematical model describing the input-output behavior of a dynamical system can be a difficult task, data of the system in form of input-output trajectories is often and increasingly available. This thesis therefore introduces three complementary data-driven analysis methods to determine input-output properties directly from data without deriving a mathematical model first. In particular, the results of this thesis include iterative methods, where data is actively sampled by performing experim...
This volume contains the papers that have been presented at the Conference on Modeling and Control of Uncertain Systems held in Sopron, Hungary on September 3-7, 1990, organised within the framework of the activities of the System and Decision Sciences Program of IIASA - the International Institute for Applied Systems Analysis. The importance of the subject has drawn the attention of researchers all over the world since several years. In fact, in most actual applications the knowledge about the system under investigation presents aspects of uncertainty due to measurement errors or poor understanding of the rele vant underlying mechanisms. For this reason models that take into account these i...
The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE’s as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions hav...