Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Geometric Group Theory
  • Language: en
  • Pages: 841

Geometric Group Theory

The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book co...

Perspectives on Noncommutative Geometry
  • Language: en
  • Pages: 176

Perspectives on Noncommutative Geometry

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This ...

Geometric Group Theory
  • Language: en
  • Pages: 390

Geometric Group Theory

  • Type: Book
  • -
  • Published: 2017-12-19
  • -
  • Publisher: Springer

Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

A First Course in Group Theory
  • Language: en
  • Pages: 300

A First Course in Group Theory

This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange’s theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.

Post-Communist Democratization
  • Language: en
  • Pages: 316

Post-Communist Democratization

This book examines the way democracy is thought about and lived by people in the post-communist world.

Topological Persistence in Geometry and Analysis
  • Language: en
  • Pages: 143

Topological Persistence in Geometry and Analysis

The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.

Mathematical Analysis and Applications in Modeling
  • Language: en
  • Pages: 518

Mathematical Analysis and Applications in Modeling

This book collects select papers presented at the “International Conference on Mathematical Analysis and Application in Modeling,” held at Jadavpur University, Kolkata, India, on 9–12 January 2018. It discusses new results in cutting-edge areas of several branches of mathematics and applications, including analysis, topology, dynamical systems (nonlinear, topological), mathematical modeling, optimization and mathematical biology. The conference has emerged as a powerful forum, bringing together leading academics, industry experts and researchers, and offering them a venue to discuss, interact and collaborate in order to stimulate the advancement of mathematics and its industrial applications.

Structure and Regularity of Group Actions on One-Manifolds
  • Language: en
  • Pages: 323

Structure and Regularity of Group Actions on One-Manifolds

This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the reconstruction of spaces from group actions. Various classical and modern tools are developed for controlling the dynamics of general finitely generated group actions on one-dimensional manifolds, subject to regularity bounds, including material on Thompson's group F, nilpotent groups, right-angled Artin groups, chain groups, finitely generated groups with prescribed critical regularities, and applications to foliation theory and the study of mapping class groups. The book will be of interest to researchers in geometric group theory.

The Structure of Groups with a Quasiconvex Hierarchy
  • Language: en
  • Pages: 374

The Structure of Groups with a Quasiconvex Hierarchy

"This monograph weaves together fundamentals of Mikhail Leonidovich Gromov's hyperbolic groups with the theory of cube complexes dual to spaces with walls. Many fundamental new ideas and methodologies are presented here for the first time: A cubical small-cancellation theory generalizing ideas from the 1960's, a version of "Dehn Filling" that works in the category of special cube complexes, and a variety of new results about right-angled Artin groups. The book culminates by providing an unexpected new theorem about the nature of hyperbolic groups that are constructible as amalgams. Among the stunning applications, are the virtual fibering of cusped hyperbolic 3-manifolds and the resolution o...

Cellular Automata and Groups
  • Language: en
  • Pages: 562

Cellular Automata and Groups

This unique book provides a self-contained exposition of the theory of cellular automata on groups and explores its deep connections with recent developments in geometric and combinatorial group theory, amenability, symbolic dynamics, the algebraic theory of group rings, and other branches of mathematics and theoretical computer science. The topics treated include the Garden of Eden theorem for amenable groups, the Gromov–Weiss surjunctivity theorem, and the solution of the Kaplansky conjecture on the stable finiteness of group rings for sofic groups. Entirely self-contained and now in its second edition, the volume includes 10 appendices and more than 600 exercises, the solutions of which are presented in the companion book Exercises in Cellular Automata and Groups (2023) by the same authors. It will appeal to a large audience, including specialists and newcomers to the field.