You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides practical guidance for statisticians, clinicians, and researchers involved in clinical trials in the biopharmaceutical industry, medical and public health organisations. Academics and students needing an introduction to handling missing data will also find this book invaluable. The authors describe how missing data can affect the outcome and credibility of a clinical trial, show by examples how a clinical team can work to prevent missing data, and present the reader with approaches to address missing data effectively. The book is illustrated throughout with realistic case studies and worked examples, and presents clear and concise guidelines to enable good planning for missing data. The authors show how to handle missing data in a way that is transparent and easy to understand for clinicians, regulators and patients. New developments are presented to improve the choice and implementation of primary and sensitivity analyses for missing data. Many SAS code examples are included – the reader is given a toolbox for implementing analyses under a variety of assumptions.
The concepts of estimands, analyses (estimators), and sensitivity are interrelated. Therefore, great need exists for an integrated approach to these topics. This book acts as a practical guide to developing and implementing statistical analysis plans by explaining fundamental concepts using accessible language, providing technical details, real-world examples, and SAS and R code to implement analyses. The updated ICH guideline raises new analytic and cross-functional challenges for statisticians. Gaps between different communities have come to surface, such as between causal inference and clinical trialists, as well as among clinicians, statisticians, and regulators when it comes to communic...
The proceedings of ECML/PKDD2003 are published in two volumes: the P- ceedings of the 14th European Conference on Machine Learning (LNAI 2837) and the Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (LNAI 2838). The two conferences were held on September 22–26, 2003 in Cavtat, a small tourist town in the vicinity of Dubrovnik, Croatia. As machine learning and knowledge discovery are two highly related ?elds, theco-locationofbothconferencesisbene?cialforbothresearchcommunities.In Cavtat, ECML and PKDD were co-located for the third time in a row, following the successful co-location of the two European conferences in Freiburg (2001) a...
The proceedings of ECML/PKDD 2004 are published in two separate, albeit - tertwined,volumes:theProceedingsofthe 15thEuropeanConferenceonMac- ne Learning (LNAI 3201) and the Proceedings of the 8th European Conferences on Principles and Practice of Knowledge Discovery in Databases (LNAI 3202). The two conferences were co-located in Pisa, Tuscany, Italy during September 20–24, 2004. It was the fourth time in a row that ECML and PKDD were co-located. - ter the successful co-locations in Freiburg (2001), Helsinki (2002), and Cavtat- Dubrovnik (2003), it became clear that researchersstrongly supported the or- nization of a major scienti?c event about machine learning and data mining in Europe. W...
Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry, including but not limited to randomized controlled clinical trials, longitudinal studies, singlearm clinical trials with external controls, and real-world evidence studies. The book starts with the central questions in drug development and licensing, takes the reader through the basic concepts and methods via different study types and through different stages, and concludes with a roadmap to conduct causal inference in cl...
There is an increasing need for educational resources for statisticians and investigators. Reflecting this, the goal of this book is to provide readers with a sound foundation in the statistical design, conduct, and analysis of clinical trials. Furthermore, it is intended as a guide for statisticians and investigators with minimal clinical trial experience who are interested in pursuing a career in this area. The advancement in genetic and molecular technologies have revolutionized drug development. In recent years, clinical trials have become increasingly sophisticated as they incorporate genomic studies, and efficient designs (such as basket and umbrella trials) have permeated the field. T...
This contributed volume presents an overview of concepts, methods, and applications used in several quantitative areas of drug research, development, and marketing. Chapters bring together the theories and applications of various disciplines, allowing readers to learn more about quantitative fields, and to better recognize the differences between them. Because it provides a thorough overview, this will serve as a self-contained resource for readers interested in the pharmaceutical industry, and the quantitative methods that serve as its foundation. Specific disciplines covered include: Biostatistics Pharmacometrics Genomics Bioinformatics Pharmacoepidemiology Commercial analytics Operational analytics Quantitative Methods in Pharmaceutical Research and Development is ideal for undergraduate students interested in learning about real-world applications of quantitative methods, and the potential career options open to them. It will also be of interest to experts working in these areas.
This book constitutes the refereed preceedings of the 13th European Conference on Machine Learning, ECML 2002, held in Helsinki, Finland in August 2002. The 41 revised full papers presented together with 4 invited contributions were carefully reviewed and selected from numerous submissions. Among the topics covered are computational discovery, search strategies, Classification, support vector machines, kernel methods, rule induction, linear learning, decision tree learning, boosting, collaborative learning, statistical learning, clustering, instance-based learning, reinforcement learning, multiagent learning, multirelational learning, Markov decision processes, active learning, etc.
Starting with a summary of the history of Artificial Intelligence, this book makes the bridge to the modern debate on the definition of Intelligence and the path to building Intelligent Machines. Since the definition of Intelligence is itself subject to open debate, the quest for Intelligent machines is pursuing a moving target. Apparently, intelligent behaviour is, to a great extent, the result of using a sophisticated associative memory, more than the result of heavy processing. The book describes theories on how the brain works, associative memory models and how a particular model - the Sparse Distributed Memory (SDM) - can be used to navigate a robot based on visual memories. Other robot navigation methods are also comprehensively revised and compared to the method proposed. The performance of the SDM-based robot has been tested in different typical problems, such as illumination changes, occlusions and image noise, taking the SDM to the limits. The results are extensively discussed in the book.
This edited volume presents current research in biostatistics with emphasis on biopharmaceutical applications. Featuring contributions presented at the 2017 ICSA Applied Statistics Symposium held in Chicago, IL on June 25 to 28, 2017, this book explores timely topics that have a high potential impact on statistical methodology and future research in biostatistics and biopharmaceuticals. The theme of this conference was Statistics for a New Generation: Challenges and Opportunities, in recognition of the advent of a new generation of statisticians. The conference attracted statisticians working in academia, government, and industry; domestic and international statisticians. From the conference...