You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Methods and results from the theory of Zariski structures, and their applications in geometry.
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.
This volume outlines current developments in model theory and combinatorial set theory and presents state-of-the-art research. Well-known researchers report on their work in model theory and set theory with applications to algebra. The papers of J. Brendle and A. Blass present one of the most interesting areas of set theory. Brendle gives a very detailed and readable account of Shelah's solution for the long-standing problem of $\mathrm{Con (\mathfrak{d a )$. It could be used in anadvanced graduate seminar on set theory. Papers by T. Altinel, J. T. Baldwin, R. Grossberg, W. Hodges, T. Hyttinen, O. Lessmann, and B. Zilber deal with questions of model theory from the viewpoint of stability theory. Here, Zilber constructs an $\omega$-stable complete theory of ``pseudo-analytic''structures on algebraically closed fields. This result is part of his program of the model-theoretic study of analytic structures by including Hrushovski's method in the analytic context. The book presents this and further developments in model theory. It is geared toward advanced graduate students and researchers interested in logic and foundations, algebra, and algebraic geometry.
This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.
Offers a comprehensive presentation of spectral spaces focussing on their topology and close connections with algebra, ordered structures, and logic.
This book is the first to concentrate on the theory of nonlinear nonlocal equations. The authors solve a number of problems concerning the asymptotic behavior of solutions of nonlinear evolution equations, the blow-up of solutions, and the global in time existence of solutions. In addition, a new classification of nonlinear nonlocal equations is introduced. A large class of these equations is treated by a single method, the main features of which are apriori estimates in different integral norms and use of the Fourier transform. This book will interest specialists in partial differential equations, as well as physicists and engineers.
This book covers fundamental techniques in the theory of -imbeddings and -immersions, emphasizing clear intuitive understanding and containing many figures and diagrams. Adachi starts with an introduction to the work of Whitney and of Haefliger on -imbeddings and -manifolds. The Smale-Hirsch theorem is presented as a generalization of the classification of -imbeddings by isotopy and is extended by Gromov's work on the subject, including Gromov's convex integration theory. Finally, as an application of Gromov's work, the author introduces Haefliger's classification theorem of foliations on open manifolds. Also described here is the Adachi's work with Landweber on the integrability of almost complex structures on open manifolds. This book would be an excellent text for upper-division undergraduate or graduate courses.Nothing provided
This book aims at providing a handy explanation of the notions behind the self-similar sets called "fractals" and "chaotic dynamical systems". The authors emphasize the beautiful relationship between fractal functions (such as Weierstrass's) and chaotic dynamical systems; these nowhere-differentiable functions are generating functions of chaotic dynamical systems. These functions are shown to be in a sense unique solutions of certain boundary problems. The last chapter of the book treats harmonic functions on fractal sets.
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weigh...