You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.
VI SOCRATES: I think that we ought to stress that we will write only about things that we have first hand experience in, in a coherent way that will be useful to engineers and other scientists and stressing the formulation without being too mathematical. We should write with integrity and honesty, giving reference to other authors where reference is due, but avoiding mentioning everybody just to be certain that our book is widely advertised. Above all, the book should be clear and useful. PLATO: I think we should include a good discussion of fundamental ideas, of how integral equations are formed, pointing out that they are like two dimensional shadows of three dimensional objects, ... SOCRA...
Numerical simulation of manufacturing processes and its integration into the design cycle are the dual themes of this book. The computational method of choice here is the boundary element method (BEM). Detailed discussions of forming, casting, machining and grinding process modelling are included.
A text in singular integrals in boundary element methods. Topics covered include: treatment in crack problems; regularization of boundary integral equations by the derivative transfer method; regularization and evaluation of singular domain integrals in boundary element methods and others.
The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code an...
Over the past decades, the Boundary Element Method has emerged as a ver satile and powerful tool for the solution of engineering problems, presenting in many cases an alternative to the more widely used Finite Element Method. As with any numerical method, the engineer or scientist who applies it to a practical problem needs to be acquainted with, and understand, its basic principles to be able to apply it correctly and be aware of its limitations. It is with this intention that we have endeavoured to write this book: to give the student or practitioner an easy-to-understand introductory course to the method so as to enable him or her to apply it judiciously. As the title suggests, this book ...
Incorporating new topics and original material, Introduction to Finite and Spectral Element Methods Using MATLAB, Second Edition enables readers to quickly understand the theoretical foundation and practical implementation of the finite element method and its companion spectral element method. Readers gain hands-on computational experience by using
Boundary Element Techniques in Engineering deals with solutions of two- and three-dimensional problems in elasticity and the potential theory where finite elements are inefficient. The book discusses approximate methods, higher-order elements, elastostatics, time-dependent problems, non-linear problems, and combination of regions. Approximate methods include weighted residual techniques, weak formulations, the inverse formulation, and boundary methods. The text also explains Laplace's equation, indirect formulation, matrix formulation, Poisson's equation, and the Helmholtz equation. It describes how elements with linear variations of u and q (i.e. linear elements) can be developed for two di...