You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first book to present a detailed discussion of both classical and recent results on the popular CahnHilliard equation and some of its variants. The focus is on mathematical analysis of CahnHilliard models, with an emphasis on thermodynamically relevant logarithmic nonlinear terms, for which several questions are still open. Initially proposed in view of applications to materials science, the CahnHilliard equation is now applied in many other areas, including image processing, biology, ecology, astronomy, and chemistry. In particular, the author addresses applications to image inpainting and tumor growth. Many chapters include open problems and directions for future research. The Cahn-Hilliard Equation: Recent Advances and Applications is intended for graduate students and researchers in applied mathematics, especially those interested in phase separation models and their generalizations and applications to other fields. Materials scientists also will find this text of interest.
Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements and spatial heterogeneity in the classical Lotka–Volterra competition systems. Interspersed throughout the book are many simple, fundamental and important open problems for readers to investigate.
The linear sampling method is the oldest and most developed of the qualitative methods in inverse scattering theory. It is based on solving a linear integral equation and then using the equation's solution as an indicator function for the determination of the support of the scattering object. This book describes the linear sampling method for a variety of electromagnetic scattering problems. It presents uniqueness theorems and the derivation of various inequalities on the material properties of the scattering object from a knowledge of the far field pattern of the scattered wave.
This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.
Phylogenetics is a topical and growing area of research. Phylogenies (phylogenetic trees and networks) allow biologists to study and graph evolutionary relationships between different species. These are also used to investigate other evolutionary processes?for example, how languages developed or how different strains of a virus (such as HIV or influenza) are related to each other.? This self-contained book addresses the underlying mathematical theory behind the reconstruction and analysis of phylogenies. The theory is grounded in classical concepts from discrete mathematics and probability theory as well as techniques from other branches of mathematics (algebra, topology, differential equations). The biological relevance of the results is highlighted throughout. The author supplies proofs of key classical theorems and includes results not covered in existing books, emphasizes relevant mathematical results derived over the past 20 years, and provides numerous exercises, examples, and figures.?
The mathematical challenges coming from the social and behavioral sciences differ significantly from typical applied mathematical concerns. ?Change,? for instance, is ubiquitous, but without knowing the fundamental driving force, standard differential and iterative methods are not appropriate. Although differing forms of aggregation are widely used, a general mathematical assessment of potential pitfalls is missing. These realities provide opportunities to create new mathematical approaches. These themes are described in an introductory, expository, and accessible manner by exploring new ways to handle dynamics and evolutionary game theory, to identify subtleties of decision and voting methods, to recognize unexpected modeling concerns, and to introduce new approaches with which to examine game theory. Applications range from avoiding undesired consequences when designing policy to identifying unanticipated voting (where the ?wrong? person could win), nonparametric statistical, and economic ?supply and demand? properties.
Modern Historiographyis the essential introduction to the history of historical writing. It explains the broad philosophical background to the different historians and historical schools of the modern era. In a unique overview of modern historiography, the book includes surveys on the Enlightenment and Counter Enlightenment; Romanticism; the voice of Science and the process of secularization within Western intellectual thought; the influence of, and broadening contact with, the New World; theAnnalesschool in France; and the effects of the repression and exile of the inter-war years and the Post-War 'moods.'Modern Historiographyprovides a clear and concise account of this modern period of historical writing.
How This Book Came About This book is, in some sense, the soul, underlying an earlier book that I had written, a book about modern science, which had the title The Search for the Meaning of Space, Time and Matter. The book was written for people with interest in modern science. It had the subtitle Images from Many Travels. The subtitle of that earlier book and the final decision to write it had its origin in a restless wanderlust, which, in the last twenty years, has driven me irresistibly to travel to the most remote places on earth. I traveled into the Arctic, the waters between North Norway and Svalbard, to Tibet over the plateau to the foot of Mount Everest, to North India to the remote ...
Many situations exist in which solutions to problems are represented as function space integrals. Such representations can be used to study the qualitative properties of the solutions and to evaluate them numerically using Monte Carlo methods. The emphasis in this book is on the behavior of solutions in special situations when certain parameters get large or small.