Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning with R
  • Language: en
  • Pages: 587

Machine Learning with R

Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

Machine Learning with R
  • Language: en
  • Pages: 459

Machine Learning with R

Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.6 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying mac...

Machine Learning with R
  • Language: en
  • Pages: 452

Machine Learning with R

Updated and upgraded to the latest libraries and most modern thinking, Machine Learning with R, Second Edition provides you with a rigorous introduction to this essential skill of professional data science. Without shying away from technical theory, it is written to provide focused and practical knowledge to get you building algorithms and crunching your data, with minimal previous experience. With this book, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you'll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering.

R: Unleash Machine Learning Techniques
  • Language: en
  • Pages: 1123

R: Unleash Machine Learning Techniques

Find out how to build smarter machine learning systems with R. Follow this three module course to become a more fluent machine learning practitioner. About This Book Build your confidence with R and find out how to solve a huge range of data-related problems Get to grips with some of the most important machine learning techniques being used by data scientists and analysts across industries today Don't just learn – apply your knowledge by following featured practical projects covering everything from financial modeling to social media analysis Who This Book Is For Aimed for intermediate-to-advanced people (especially data scientist) who are already into the field of data science What You Wi...

R: Data Analysis and Visualization
  • Language: en
  • Pages: 1783

R: Data Analysis and Visualization

Master the art of building analytical models using R About This Book Load, wrangle, and analyze your data using the world's most powerful statistical programming language Build and customize publication-quality visualizations of powerful and stunning R graphs Develop key skills and techniques with R to create and customize data mining algorithms Use R to optimize your trading strategy and build up your own risk management system Discover how to build machine learning algorithms, prepare data, and dig deep into data prediction techniques with R Who This Book Is For This course is for data scientist or quantitative analyst who are looking at learning R and take advantage of its powerful analyt...

R Machine Learning Projects
  • Language: en
  • Pages: 325

R Machine Learning Projects

Master a range of machine learning domains with real-world projects using TensorFlow for R, H2O, MXNet, and more Key FeaturesMaster machine learning, deep learning, and predictive modeling concepts in R 3.5Build intelligent end-to-end projects for finance, retail, social media, and a variety of domainsImplement smart cognitive models with helpful tips and best practicesBook Description R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks...

Hands-On Machine Learning with R
  • Language: en
  • Pages: 373

Hands-On Machine Learning with R

  • Type: Book
  • -
  • Published: 2019-11-07
  • -
  • Publisher: CRC Press

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the enti...

Michigan Ensian
  • Language: en
  • Pages: 472

Michigan Ensian

None

Computational Science - ICCS 2007
  • Language: en
  • Pages: 1310

Computational Science - ICCS 2007

  • Type: Book
  • -
  • Published: 2007-07-13
  • -
  • Publisher: Springer

Part of a four-volume set, this book constitutes the refereed proceedings of the 7th International Conference on Computational Science, ICCS 2007, held in Beijing, China in May 2007. The papers cover a large volume of topics in computational science and related areas, from multiscale physics to wireless networks, and from graph theory to tools for program development.

Advancing Technology Industrialization Through Intelligent Software Methodologies, Tools and Techniques
  • Language: en
  • Pages: 770

Advancing Technology Industrialization Through Intelligent Software Methodologies, Tools and Techniques

  • Type: Book
  • -
  • Published: 2019-09-17
  • -
  • Publisher: IOS Press

Software has become ever more crucial as an enabler, from daily routines to important national decisions. But from time to time, as society adapts to frequent and rapid changes in technology, software development fails to come up to expectations due to issues with efficiency, reliability and security, and with the robustness of methodologies, tools and techniques not keeping pace with the rapidly evolving market. This book presents the proceedings of SoMeT_19, the 18th International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques, held in Kuching, Malaysia, from 23–25 September 2019. The book explores new trends and theories that highlight the direction...