You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
This volume contains the proceedings of the International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, held August 12-16, 2010, at the National Institute of Advanced Studies, Bangalore, India, and the follow-up conference held May 18-20, 2012, at the University of California, USA. It contains original research and survey articles on various topics in the theory of representations of Lie algebras, quantum groups and algebraic groups, including crystal bases, categorification, toroidal algebras and their generalisations, vertex algebras, Hecke algebras, Kazhdan-Lusztig bases, $q$-Schur algebras, and Weyl algebras.
This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when l (resp., p ) is smaller than the Coxeter number h of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible G -modules stipulates that p=h. The main result in this paper provides a surprisingly uniform answer for the cohomology algebra H (u ? ,C) of the small quantum group.
This book deals with current developments in stochastic analysis and its interfaces with partial differential equations, dynamical systems, mathematical physics, differential geometry, and infinite-dimensional analysis. The origins of stochastic analysis can be found in Norbert Wiener's construction of Brownian motion and Kiyosi Itô's subsequent development of stochastic integration and the closely related theory of stochastic (ordinary) differential equations. The papers in this volume indicate the great strides that have been made in recent years, exhibiting the tremendous power and diversity of stochastic analysis while giving a clear indication of the unsolved problems and possible future directions for development. The collection represents the proceedings of the AMS Summer Institute on Stochastic Analysis, held in July 1993 at Cornell University. Many of the papers are largely expository in character while containing new results.
The lectures from a course in the representation theory of semi- simple groups, automorphic forms, and the relations between them. The purpose is to help analysts make systematic use of Lie groups in work on harmonic analysis, differential equations, and mathematical physics; and to provide number theorists with the representation-theoretic input to Wiles's proof of Fermat's Last Theorem. Begins with an introductory treatment of structure theory and ends with the current status of functionality. Annotation copyrighted by Book News, Inc., Portland, OR
This book contains lectures presented at the MIT symposium on the 100th anniversary of Norbert Wiener's birth held in October 1994. The topics reflect Wiener's main interests while emphasizing current developments. In addition to lectures dealing directly with problems on which Wiener worked, such as potential theory, harmonic analysis, Wiener-Hopf theory, and Paley-Wiener theory, the book discusses the following topics: BLFourier integral operators with complex phase (a contemporary successor to the Paley-Wiener theory) BLstatistical aspects of quantum mechanics and of liquid crystals BLfinancial markets, including the new trading strategies for options based on Wiener processes BLstatistical methods of genetic research BLmodels of the nervous system, pattern recognition, and the nature of intelligence The volume includes reviews on Norbert Wiener's contributions from historical and current perspectives. This book gives mathematical researchers an overview of new mathematical problems presented by other areas and gives researchers in other fields a broad overview of the ways in which advanced mathematics might be useful to them.
Contains papers from a summer 1997 meeting on recent developments and important open problems in geometric control theory. Topics include linear control systems in Lie groups and controllability, real analytic geometry and local observability, singular extremals of order 3 and chattering, infinite time horizon stochastic control problems in hyperbolic three space, and Monge-Ampere equations. No index. Annotation copyrighted by Book News, Inc., Portland, OR.