You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains the contributions of selected young chemists from the field of nanotechnology and material sciences. The contributions are grouped under the following umbrella topics: Self assembly Nanomaterials Molecular Machinery This volume is an indispensable read for all materials scientists, organic, and inorganic chemists, Ph.D. students in chemistry and material sciences interested in seeing what tomorrow's chemistry will look like.
Providing a glimpse into the future, the young scientists contributing here were considered to be the most important for tomorrow's chemistry and materials science. They present the state of the art in their particular fields of research, with topics ranging from new synthetic pathways and nanotechnology to green chemistry. Of major interest to organic chemists, materials scientists and biochemists.
This volume represents one of the two edited by inviting a selection of young researchers participating to the European Young Chemist Award 2010. The other volume concerns the area of Nanotechnology/Material Science and is titled: Molecules at Work. This book contains the contributions of selected young chemists from the field of synthetic chemistry. The contributions are grouped under the three following umbrella topics: Synthetic Methods Catalysis Combinatorial and Chemical Biology This volume is an indispensable read for all organic and inorganic chemists, biochemists, chemists working with/on organometallics, and Ph.D. students in chemistry interested in seeing what tomorrow's chemistry will look like.
Written by some of the most talented young chemists in Europe, this text covers most of the groundbreaking issues in materials science. It provides an account of the latest research results in European materials chemistry based on a selection of leading young scientists participating in the 2008 European Young Chemists Award competition. The contributions range from nanotechnology to catalysis. In addition, the authors provide a current overview of their field of research and a preview of future directions. For materials scientists, as well as organic and analytical chemists.
The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications.
Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometre is a billionth of a meter, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book presents the latest research in this frontier field.
Very few materials have attracted so much attention in recent years, both from researchers and industry, as layered double hydroxides (LDHs) have. LDHs, which are also referred to as anionic clays or hydrotalcites, are a wide class of inorganic ionic lamellar clay materials consisting of alternately stacked positively charged metal hydroxide layers with intercalated charge-balancing anions in hydrated interlayer regions. Their unique properties, such as their extremely high versatility in chemical composition and intercalation ability, extraordinary tuneability in composition as well as morphology, good biocompatibility and high anion exchangeability, have triggered immense interdisciplinary...
The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely and comprehensive overview of SPM applications.