You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
How do you convey to your students, colleagues and friends some of the beauty of the kind of mathematics you are obsessed with? If you are a mathematician interested in finite or topological geometry and combinatorial designs, you could start by showing them some of the (400+) pictures in the "picture book". Pictures are what this book is all about; original pictures of everybody's favorite geometries such as configurations, projective planes and spaces, circle planes, generalized polygons, mathematical biplanes and other designs which capture much of the beauty, construction principles, particularities, substructures and interconnections of these geometries. The level of the text is suitable for advanced undergraduates and graduate students. Even if you are a mathematician who just wants some interesting reading you will enjoy the author's very original and comprehensive guided tour of small finite geometries and geometries on surfaces This guided tour includes lots of sterograms of the spatial models, games and puzzles and instructions on how to construct your own pictures and build some of the spatial models yourself.
Mel Gibson teaching Euclidean geometry, Meg Ryan and Tim Robbins acting out Zeno's paradox, Michael Jackson proving in three different ways that 7 x 13 = 28. These are just a few of the intriguing mathematical snippets that occur in hundreds of movies. Burkard Polster and Marty Ross pored through the cinematic calculus to create this thorough and entertaining survey of the quirky, fun, and beautiful mathematics to be found on the big screen. Math Goes to the Movies is based on the authors' own collection of more than 700 mathematical movies and their many years using movie clips to inject moments of fun into their courses. With more than 200 illustrations, many of them screenshots from the m...
A Dingo Ate My Math Book presents ingenious, unusual, and beautiful nuggets of mathematics with a distinctly Australian flavor. It focuses, for example, on Australians' love of sports and gambling, and on Melbourne's iconic, mathematically inspired architecture. Written in a playful and humorous style, the book offers mathematical entertainment as well as a glimpse of Australian culture for the mathematically curious of all ages. This collection of engaging stories was extracted from the Maths Masters column that ran from 2007 to 2014 in Australia's Age newspaper. The maths masters in question are Burkard Polster and Marty Ross, two (immigrant) Aussie mathematicians, who each week would write about math in the news, providing a new look at old favorites, mathematical history, quirks of school mathematics—whatever took their fancy. All articles were written for a very general audience, with the intention of being as inviting as possible and assuming a minimum of mathematical background.
Putting Two and Two Together is a humorous and quirky collection of unusual, ingenious, and beautiful morsels of mathematics. Authors Burkard Polster (YouTube's Mathologer) and Marty Ross delve into mathematical puzzles and phenomena in engaging stories featuring current events, sports, and history, many flavored with a distinctive bit of Australiana. Each chapter ends with “puzzles to ponder” that will spur further reflection. These stories were written for a general audience, and originally appeared in the Maths Masters column in The Age newspaper. The book offers mathematical entertainment for curious readers of all ages, and assumes a minimum of mathematical background. Polster and R...
"Sciencia" gathers together six individual volumes spanning the realms of mathematics, physics, chemistry, biology, evolution, and astronomy. Lavishly illustrated with engravings, woodcuts, and original drawings and diagrams, it inspires readers of all ages to take an interest in the interconnected knowledge of the modern sciences.
Q.E.D. presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Crisscross, zigzag, bowtie, devil, angel, or star: which are the longest, the shortest, the strongest, and the weakest lacings? Pondering the mathematics of shoelaces, the author paints a vivid picture of the simple, beautiful, and surprising characterizations of the most common shoelace patterns. The mathematics involved is an attractive mix of combinatorics and elementary calculus. This book will be enjoyed by mathematically minded people for as long as there are shoes to lace.Burkard Polster is a well-known mathematical juggler, magician, origami expert, bubble-master, shoelace charmer, and "Count von Count" impersonator. His previous books include A Geometrical Picture Book, The Mathematics of Juggling, and QED: Beauty in Mathematical Proof.
The year's finest mathematics writing from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2016 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Burkard Polster ...
The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact.
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk ...