You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits.
Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a b...
This book provides a comprehensive overview of reaction processes in the Earth's crust and on its surface, both in the laboratory and in the field. A clear exposition of the underlying equations and calculation techniques is balanced by a large number of fully worked examples. The book uses The Geochemist's Workbench® modeling software, developed by the author and already installed at over 1000 universities and research facilities worldwide. Since publication of the first edition, the field of reaction modeling has continued to grow and find increasingly broad application. In particular, the description of microbial activity, surface chemistry, and redox chemistry within reaction models has become broader and more rigorous. These areas are covered in detail in this new edition, which was originally published in 2007. This text is written for graduate students and academic researchers in the fields of geochemistry, environmental engineering, contaminant hydrology, geomicrobiology, and numerical modeling.
The spatial variability of dissolved arsenic (As) concentrations in aquifers was studied near Ha Noi, Vietnam. The goal was to identify major geochemical, sedimentological and hydrochemical differences between high and low As regions. Also, the behaviour of As and other elements during sequential extractions was characterized with micro synchrotron XRF analysis. Based on the results a conceptual model was developed which could explain the current situation on site and in other affected areas.
Combined publication of: ICID, CIGR, Katholieke Universiteit Leuven and EurAgEng
Groundwater issues have generated worldwide concern in recent decades. The problems are numerous: too little groundwater, too much groundwater, groundwater contaminated by either saline water or a broad spectrum of industrial and domestic pollutants. Many urban groundwater problems are not unique to any one region, which is the thinking behind this book. Many of the case studies presented here have never before been described in English. Overall, the papers represent the work and experience of researchers and groundwater professionals who have worked on urban groundwater issues in developed and less-developed nations around the world. They reveal the magnitude and scope of the problem as well as identify future challenges, potential courses of action, and emerging technologies that offer hope for the future.
Geothermal Energy Systems The book encounters basic knowledge about geothermal technology for the utilization of geothermal resources. The book helps to understand the basic geology needed for the utilization of geothermal energy, shows up the practice to make access to geothermal reservoirs by drilling and the engineering of the reservoir by enhancing methods. The book describes the technology to make use of the Earth?s heat for direct use, power, and/or chill and gives boundary conditions for its economic and environmental utilization. A special focus is made on enhanced or engineered geothermal systems (EGS) which are based on concepts which bring a priori less productive reservoirs to an economic use. From the contents: Reservoir Definition Exploration Methods Drilling into Geothermal Reservoirs Enhancing Geothermal Reservoirs Geothermal Reservoir Simulation Energetic Use of EGS Reservoirs Economic Performance and Environmental Assessment Deployment of Enhanced Geothermal Systems plants and CO2-mitigation