You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this innovative work, 43 distinguished contributors present the latest developments together with surveys of the field. Coverage encompasses several closely related disciplines and most of the results shown in this volume are unavailable in any other source. Among the important topics addressed are applications to the theory of ordinary differential equations of generalized order, degree theoretic methods in optimal control, numerical treatment of a nonlinear problem arising in heat transfer, and applications of fixed point theorems to problems in optimization and best approximation. Encouraging interdisciplinary research to stimulate further advances, Nonlinear Analysis and Applications serves as the vital reference for mathematicians, researchers, and graduate students engaged in applied mathematics, engineering, physics, industrial science, economics, optimization, probability, medicinal and operational research, and differential equations. Additionally, it is eminently suitable for use in professional seminars.
Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.
Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.
Before I get down to the business of exposition, I'd like to offer a little motivation. I want to show that there are one or two places in homotopy theory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential topologists. Since Bott, we know that ~ (SO) is periodic with period 8: r 6 8 r = 1 2 3 4 5 7 9· . · Z o o o z On the other hand, ~S is not known, but we can nevertheless r ask about the behavior of J. The differential topologists prove: 2 Th~~: If I' = ~ - 1, so that 'IT"r(SO) ~ 2, then J('IT"r(SO)) = 2m where m is a multiple of the denominator of ~/4k th (l\. being in the Pc Bepnoulli numher.) Conject~~: The above result is best possible, i.e. J('IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI'e ~ No proof in sight. Q9njecture Eo If I' = 8k or 8k + 1, so that 'IT"r(SO) = Z2' then J('IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl'ess.
This book arose from courses taught by the authors, and is designed for both instructional and reference use during and after a first course in algebraic topology. It is a handbook for users who want to calculate, but whose main interests are in applications using the current literature, rather than in developing the theory. Typical areas of applications are differential geometry and theoretical physics. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. We show how to calculate homotopy groups, homology groups and cohomology rings of most of the major theories, exact homotopy sequences of fibrations, some important spectral sequences, and all the obstructions that we can compute from these. Our approach is to mix illustrative examples with those proofs that actually develop transferable calculational aids. We give extensive appendices with notes on background material, extensive tables of data, and a thorough index. Audience: Graduate students and professionals in mathematics and physics.
Eleven of the fourteen invited speakers at a symposium held by the Oxford Mathematical Institute in June 1972 have revised their contributions and submitted them for publication in this volume. The present papers do not necessarily closely correspond with the original talks, as it was the intention of the volume editor to make this book of mathematical rather than historical interest. The contributions will be of value to workers in topology in universities and polytechnics.
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Includes entries for maps and atlases.
Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.
This volume deals with the following topics: 2-D, 3-D automata and grammars, parallel architecture for image processing, parallel digital geometry algorithms, data allocation strategies for parallel image processing algorithms, complexity analysis of parallel image operators. The contributions are written by leading experts in the fields of models, algorithms and architectures for parallel image processing.