You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1)...
The third Conference on Mathematical Models and Numerical Simulation in Electronic Industry brought together researchers in mathematics, electrical engineering and scientists working in industry. The contributions to this volume try to bridge the gap between basic and applied mathematics, research in electrical engineering and the needs of industry.
This proceedings volume highlights a selection of papers presented at the 7th International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam, during March 19-23, 2018. The conference has been organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology, the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered include numerical simulation, methods for optimization and control, machine learning, parallel computing and software development, as well as the applications of scientific computing in mechanical engineering, airspace engineering, environmental physics, decision making, hydrogeology, material science and electric circuits.
Differential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to constraints, in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering, system biology. DAEs and their more abstract versions in infinite-dimensional spaces comprise a great potential for future mathematical modeling of complex coupled processes. The purpose of the book is to exp...
This collection of selected papers presented at the 11th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in St. Wolfgang, Austria, in 2016, showcases the state of the art in SCEE. The aim of the SCEE 2016 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The focus in methodology was on model order reduction and uncertainty quantificatio...
Today's most commonly used circuit models increasingly tend to lose their validity in circuit simulation due to rapid technological developments, miniaturization and increased complexity of integrated circuits. The starting point of this thesis was to tackle these challenges by refining the critical parts of the circuit by combining circuit simulation directly with distributed device models. The approach set out in this thesis couples partial differential equations for electromagnetic devices - modeled by Maxwell's equations -, to differential-algebraic equations, which describe basic circuit elements including memristors and the circuit's topology. First, Maxwell's equations are spatially d...
Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage.In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Per...
Differential-algebraic equations (DAEs) provide an essential tool for system modeling and analysis within different fields of applied sciences and engineering. This book addresses modeling issues and analytical properties of DAEs, together with some applications in electrical circuit theory.Beginning with elementary aspects, the author succeeds in providing a self-contained and comprehensive presentation of several advanced topics in DAE theory, such as the full characterization of linear time-varying equations via projector methods or the geometric reduction of nonlinear systems. Recent results on singularities are extensively discussed. The book also addresses in detail differential-algebraic models of electrical and electronic circuits, including index characterizations and qualitative aspects of circuit dynamics. In particular, the reader will find a thorough discussion of the state/semistate dichotomy in circuit modeling. The state formulation problem, which has attracted much attention in the engineering literature, is cleverly tackled here as a reduction problem on semistate models.
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.