You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coord...
This book covers the bioinorganic chemistry of molybdenum and tungsten enzymes and the physicochemical methods that are used to investigate their structure and function.
There has been enormous progress in our understanding of molybdenum and tungsten enzymes and relevant inorganic complexes of molybdenum and tungsten over the past twenty years. This set of three books provides a timely and comprehensive overview of the field and documents the latest research. Building on the first and second volumes that focussed on biochemistry and bioinorganic chemistry aspects, the third volume focusses on spectroscopic and computational methods that have been applied to both enzymes and model compounds. A particular emphasis is placed on how these important studies have been used to reveal critical components of enzyme mechanisms.This text will be a valuable reference to workers both inside and outside the field, including graduate students and young investigators interested in developing new research programs in this area.
Non-conventional synthetic methods may provide new and green methods for the preparation of bioactive heterocycles. These methods, such as microwave and ultrasound assisted synthesis, biocatalysis, photochemistry and electrosynthesis use less energy and may produce less waste to get the desired products when compared to traditional methods. This book explores the use of these methods when synthesizing various biologically relevant heterocyclic scaffolds. THE SERIES: GREEN BIOACTIVE HETEROCYCLES Heterocycles are a widely utilized group of molecules as they often contain bioactivity that is useful in drug development, agriculture, and other applications. However, their synthesis remains challenging with diffi cult to control functional groups. With a greater focus on sustainable synthesis practices, there is a need to develop greener synthetic methods for the synthesis of structurally diverse bioactive heterocyclic scaffolds. This series aims to do so, by collecting developments into common themes.
Coordination chemistry and metal complexes is one of the active fields of research in Chemistry. The scope of this field has now become so broad that the number and the kind of compounds with which it is concerned is large enough for the metal compounds and complexes to gain importance in clinical, pharmacological, medicinal, analytical and industrial areas. Schiff bases are most widely used as chelating agents in coordination chemistry. The synthesis and application of Schiff base and their coordination compounds have been highly considered in inorganic and bioinorganic fields as their structural properties are similar to those of the compounds involved in biological systems. The transition metal complexes of Schiff bases derived from heterocyclic compounds have been the centre of attraction for many workers in recent years.
This book provides an overview of bioinspired metal-sulfur catalysis by covering structures, activities and model complexes of enzymes exhibiting metal sulphur moieties in their active center.
Reactions catalyzed by metalloenzymes have great potential for applications in the biotechnology and pharmaceutical industries. While only a few of these enzymes have yet been used in such applications, in the last few decades numerous efficient, selective, environmentally friendly and economical synthetic analogues have been described, including supramolecular, polymeric, nanoparticulate and lowmolecular- weight organometallic complexes, and metal organic frameworks. In this Research Topic, we present a collection of original research and review articles that show significant recent advances made in the rational design of such artificial metalloenzymes.
June 04-05, 2018 London, UK Key Topics : Chemical Crystallography, Advanced Crystallography, Crystallography Of Novel Materials, Spectroscopy, Spectroscopy Applications, Crystal Growth, Precession Electron Diffraction (PED), Nuclear Magnetic Resonance Crystallography (NMR Crystallography), Electron Crystallography, Recent Development In The X-Ray Studies, Crystallography Applications, Advances In Neutron Diffraction, Biological Structure Determination, Crystallography In Biology, Application Of Modern Chemistry,
None