You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data e...
Scholars from a range of disciplines interrogate terms relevant to critical studies of big data, from abuse and aggregate to visualization and vulnerability. This pathbreaking work offers an interdisciplinary perspective on big data, interrogating key terms. Scholars from a range of disciplines interrogate concepts relevant to critical studies of big data--arranged glossary style, from from abuse and aggregate to visualization and vulnerability--both challenging conventional usage of such often-used terms as prediction and objectivity and introducing such unfamiliar ones as overfitting and copynorm. The contributors include both leading researchers, including N. Katherine Hayles, Johanna Drucker and Lisa Gitelman, and such emerging agenda-setting scholars as Safiya Noble, Sarah T. Roberts and Nicole Starosielski.
An exploration of how design might be led by marginalized communities, dismantle structural inequality, and advance collective liberation and ecological survival. What is the relationship between design, power, and social justice? “Design justice” is an approach to design that is led by marginalized communities and that aims expilcitly to challenge, rather than reproduce, structural inequalities. It has emerged from a growing community of designers in various fields who work closely with social movements and community-based organizations around the world. This book explores the theory and practice of design justice, demonstrates how universalist design principles and practices erase cert...
Today we are witnessing an increased use of data visualization in society. Across domains such as work, education and the news, various forms of graphs, charts and maps are used to explain, convince and tell stories. In an era in which more and more data are produced and circulated digitally, and digital tools make visualization production increasingly accessible, it is important to study the conditions under which such visual texts are generated, disseminated and thought to be of societal benefit. This book is a contribution to the multi-disciplined and multi-faceted conversation concerning the forms, uses and roles of data visualization in society. Do data visualizations do 'good' or 'bad'? Do they promote understanding and engagement, or do they do ideological work, privileging certain views of the world over others? The contributions in the book engage with these core questions from a range of disciplinary perspectives.
Paired informal and scholarly essays show how everyday events reveal fundamental concepts of data, including its creation, aggregation, management, and use. Whether questioning numbers on a scale, laughing at a misspelling of one’s name, or finding ourselves confused in a foreign supermarket, we are engaging with data. The only way to handle data responsibly, says Melanie Feinberg in this incisive work, is to take into account its human character. Though the data she discusses may seem familiar, close scrutiny shows it to be ambiguous, complicated, and uncertain: unruly. Drawing on the tools of information science, she uses everyday events such as deciding between Blender A and Blender B o...
Pairing full-length scholarly essays with shorter pieces drawn from scholarly blogs and conference presentations, as well as commissioned interviews and position statements, Debates in the Digital Humanities 2016 reveals a dynamic view of a field in negotiation with its identity, methods, and reach. Pieces in the book explore how DH can and must change in response to social justice movements and events like #Ferguson; how DH alters and is altered by community college classrooms; and how scholars applying DH approaches to feminist studies, queer studies, and black studies might reframe the commitments of DH analysts. Numerous contributors examine the movement of interdisciplinary DH work into...
Tell your story and show it with data, using free and easy-to-learn tools on the web. This introductory book teaches you how to design interactive charts and customized maps for your website, beginning with simple drag-and-drop tools such as Google Sheets, Datawrapper, and Tableau Public. You'll also gradually learn how to edit open source code templates like Chart.js, Highcharts, and Leaflet on GitHub. Hands-On Data Visualization for All takes you step-by-step through tutorials, real-world examples, and online resources. This hands-on resource is ideal for students, nonprofit organizations, small business owners, local governments, journalists, academics, and anyone who wants to take data o...
This volume provides a means of foregrounding new questions, methods, and theories which can be applied to digital media, platforms, and infrastructures. These inquiries include, among others, how representation to hardware, software, computer code, and infrastructures might be implicated in global economic, political, and social systems of control.
How big data and machine learning encode discrimination and create agitated clusters of comforting rage. In Discriminating Data, Wendy Hui Kyong Chun reveals how polarization is a goal—not an error—within big data and machine learning. These methods, she argues, encode segregation, eugenics, and identity politics through their default assumptions and conditions. Correlation, which grounds big data’s predictive potential, stems from twentieth-century eugenic attempts to “breed” a better future. Recommender systems foster angry clusters of sameness through homophily. Users are “trained” to become authentically predictable via a politics and technology of recognition. Machine lear...
'Kate Manne is the Simone de Beauvoir of the 21st century' - Amanda Marcotte 'I want to press this book on every schoolgirl who thinks that feminism is uncool, any woman who thinks the most important gender battles are won, pretty much every man I know, and say, have you thought about this?' Sophie McBain, New Statesman Male entitlement takes many forms. To sex, yes, but more insidiously to admiration, bodily autonomy, knowledge, power, even care. In this urgent intervention, philosopher Kate Manne offers a radical new framework for understanding misogyny. In clear-sighted, powerful prose, she ranges widely across the culture to show how the idea that a privileged man is tacitly deemed to be...