You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.
There are many questions about the mathematical preparation teachers need. Recent recommendations from a variety of sources state that reforming teacher preparation in postsecondary institutions is central in providing quality mathematics education to all students. The Mathematics Teacher Preparation Content Workshop examined this problem by considering two central questions: What is the mathematical knowledge teachers need to know in order to teach well? How can teachers develop the mathematical knowledge they need to teach well? The Workshop activities focused on using actual acts of teaching such as examining student work, designing tasks, or posing questions, as a medium for teacher learning. The Workshop proceedings, Knowing and Learning Mathematics for Teaching, is a collection of the papers presented, the activities, and plenary sessions that took place.
Teachers try to help their students learn. But why do they make the particular teaching choices they do? What resources do they draw upon? What accounts for the success or failure of their efforts? In How We Think, esteemed scholar and mathematician, Alan H. Schoenfeld, proposes a groundbreaking theory and model for how we think and act in the classroom and beyond. Based on thirty years of research on problem solving and teaching, Schoenfeld provides compelling evidence for a concrete approach that describes how teachers, and individuals more generally, navigate their way through in-the-moment decision-making in well-practiced domains. Applying his theoretical model to detailed representations and analyses of teachers at work as well as of professionals outside education, Schoenfeld argues that understanding and recognizing the goal-oriented patterns of our day to day decisions can help identify what makes effective or ineffective behavior in the classroom and beyond.
This book provides an overview of a body of work conducted over the past seven years related to the preparation of secondary mathematics teachers by the Mathematics Teacher Education Partnership (MTE-Partnership), a national consortium of more than 90 universities and 100 school systems. The MTE-Partnership is organized as a Networked Improvement Community (NIC), which combines the disciplined inquiry of improvement science with the power of networking to accelerate improvement by engaging a broad set of participants. The MTE-Partnership is addressing key challenges in secondary mathematics teacher preparation, including: • Supporting the development of content knowledge relevant to teachi...
This is a text that contains the latest in thinking and the best in practice. It provides a state-of-the-art statement on tertiary teaching from a multi-perspective standpoint. No previous book has attempted to take such a wide view of the topic. The book will be of special interest to academic mathematicians, mathematics educators, and educational researchers. It arose from the ICMI Study into the teaching and learning of mathematics at university level (initiated at the conference in Singapore, 1998).
An Iraq war comedy that “is everything that terrible conflict was not: beautifully planned and perfectly executed; funny and smart and lyrical; a triumph” (Darin Strauss, author of Half a Life). Fobbit ’fä-bit, noun. Definition: A US soldier stationed at a Forward Operating Base who avoids combat by remaining at the base, esp. during Operation Iraqi Freedom (2003–2011). Pejorative. In the satirical tradition of Catch-22 and M*A*S*H, Fobbit, a New York Times Notable Book, takes us into the chaotic world of Baghdad’s Forward Operating Base Triumph. The Forward Operating base, or FOB, is like the back-office of the battlefield—where people eat and sleep, and where a lot of soldiers...
This report is a resource for those who teach mathematics and statistics to PreK-12 mathematics teachers, both future teachers and those who already teach in our nation's schools. The report makes recommendations for the mathematics that teachers should know and how they should come to know that mathematics. It urges greater involvement of mathematicians and statisticians in teacher education so that the nation's mathematics teachers have the knowledge, skills, and dispositions needed to provide students with a mathematics education that ensures high school graduates are college- and career-ready as envisioned by the Common Core State Standards. This report draws on the experience and knowle...
This volume focuses on the important mathematical idea of functions that, with the technology of computers and calculators, can be dynamically represented in ways that have not been possible previously. The book's editors contend that as result of recent technological developments combined with the integrated knowledge available from research on teaching, instruction, students' thinking, and assessment, curriculum developers, researchers, and teacher educators are faced with an unprecedented opportunity for making dramatic changes. The book presents content considerations that occur when the mathematics of graphs and functions relate to curriculum. It also examines content in a carefully considered integration of research that conveys where the field stands and where it might go. Drawing heavily on their own work, the chapter authors reconceptualize research in their specific areas so that this knowledge is integrated with the others' strands. This model for synthesizing research can serve as a paradigm for how research in mathematics education can -- and probably should -- proceed.