You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, David Stevenson offers us a look at the evolution of planets as they move from balls of mixed molten rock to vibrant worlds capable of hosting life. Embedded in our everyday architecture and in the literal ground beneath our feet, granite and its kin lie at the heart of many features of the Earth that we take for granted. From volcanism and mountain building to shifting water levels and local weather patterns, these rocks are closely intertwined with the complex processes that continue to shape and reshape our world. This book serves as a wonderful primer for anybody interested in our planet’s geological past and that of other planets in our Solar System and beyond. It illustrates not only how our planet’s surface evolved, but also how granite played a pivotal role in the creation of complex, intelligent life on Earth. There has long been a missing element in popular astronomy, which Stevenson now aims to fill: how geological and biological evolution work in a complex partnership, and what our planet’s own diversity can teach us about other rocky worlds.
The last thirty years have seen an irrevocable change in the field of planetary science with the discovery of the first planets around stars other than our own Sun. While approximately twenty percent of the exoplanets we have discovered are close in size to the Earth, the similarity of their surface environment to our home world remains unknown. This book presents an exploration of the potential diversity of rocky planets through a quantitative study of how planetary processes change as properties deviate from the Earth. Changes in four specific properties are considered: the presence of a magnetic field, the production and loss of internal heat, planetary composition and volatile abundance.
This volume of the EMU Notes in Mineralogy is one of the outcomes of a school in planetary mineralogy that was held in Glasgow, Scotland, in 2014. The school was inspired by the recent advances in our understanding of the nature and evolution of our Solar System that have come from the missions to study and sample asteroids and comets, and the very successful Mars orbiters and landers. At the same time our horizons have expanded greatly with the discovery of extrasolar protoplanetary disks, planets and planetary systems by space telescopes. The continued success of such telescopic and robotic exploration requires a supply of highly skilled people and so one of the goals of the Glasgow school was to help build a community of early-career planetary scientists and space engineers.
Offers an authoritative synthesis of knowledge of the planet Mercury after the MESSENGER mission, for researchers and students in planetary science.
The past decade has delivered remarkable discoveries in the study of exoplanets. Hand-in-hand with these advances, a theoretical understanding of the myriad of processes that dictate the formation and evolution of planets has matured, spurred on by the avalanche of unexpected discoveries. Appreciation of the factors that make a planet hospitable to life has grown in sophistication, as has understanding of the context for biosignatures, the remotely detectable aspects of a planet's atmosphere or surface that reveal the presence of life. Exoplanet Science Strategy highlights strategic priorities for large, coordinated efforts that will support the scientific goals of the broad exoplanet science community. This report outlines a strategic plan that will answer lingering questions through a combination of large, ambitious community-supported efforts and support for diverse, creative, community-driven investigator research.
The story of exoplanets, planets orbiting stars outside of our solar system
In this first full-scale attempt to reconstruct the chemical evolution of the Earth's atmosphere and oceans, Heinrich Holland assembles data from a wide spectrum of fields to trace the history of the ocean-atmosphere system. A pioneer in an increasingly important area of scholarship, he presents a comprehensive treatment of knowledge on this subject, provides an extensive bibliography, and outlines problems and approaches for further research. The first four chapters deal with the turbulent first half billion years of Earth history. The next four chapters, devoted largely to the Earth from 3.9 to 0.6 b.y.b.p., demonstrate that changes in the atmosphere and oceans during this period were not dramatic. The last chapter of the book deals with the Phanerozoic Eon; although the isotopic composition of sulfur and strontium in seawater varied greatly during this period of Earth history, the chemical composition of seawater did not.
Understanding planetary habitability is one of the major challenges of the current scientific era, and is a vast inter-disciplinary undertaking that combines planetary science, climate science, and stellar astrophysics. This book provides an overview of the many processes that influence the energy balance of planetary surface environments and control the sustainability of temperate conditions. These factors include such aspects as the influence of stars, the atmospheres and interiors or planets, and the orbital dynamics of planetary systems. Also described are the concepts behind the habitable zone, lessons learned from solar system data, and the vast opportunities that are provided by exoplanet discoveries, both now and into the future. Key Features: Summarises current exoplanet discoveries relevant to habitability Aimed at graduate students and researchers with an interest in exoplanets and astrobiology Describes the primary factors that influence the habitability of a planet Emphasises the need for in situ data in our solar system Covers the degeneracy of geosignatures and biosignatures
A contemporary and complete introduction to astrophysics for astronomy and physics majors taking a two-semester survey course.
They range in size from microscopic particles to masses of many tons. The geologic diversity of asteroids and other rocky bodies of the solar system are displayed in the enormous variety of textures and mineralogies observed in meteorites. The composition, chemistry, and mineralogy of primitive meteorites collectively provide evidence for a wide variety of chemical and physical processes. This book synthesizes our current understanding of the early solar system, summarizing information about processes that occurred before its formation. It will be valuable as a textbook for graduate education in planetary science and as a reference for meteoriticists and researchers in allied fields worldwide.