You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first non-electromagnetic messengers from space were discovered in the early 20th century, but it is only now that multimessenger astronomy is coming into its own. The aim of Multimessenger Astronomy in Practice is to aid an astronomer who is new to research in a particular area of multimessenger astronomy. Covering electromatic radiation from radio through to gamma-rays, and moving on to neutrino, cosmic-ray and gravitational wave astronomy, it gives the reader an overview of the celestial objects detected in each region, the unique methods used to measure them, as well as the principles and methods of data collection, calibration, reduction and analysis.
The study of exoplanets is one of the most vibrant fields of astrophysics today. Precise radial velocity (RV, or Doppler) measurements created the field by discovering the first exoplanets. Although employed for more than 30 years, RV measurements are still relevant today; when used with the transit method it provides the first characterization of exoplanets in terms of its mass, radius, and bulk density. These provide the first clues as to the internal structure of the exoplanet. With this text, Hatzes provides a deep understanding of the Doppler method, including how to achieve RV measurement precision, as well as the challenges, limitations, and potential of the technique. It also covers other aspects of the method such instrumentation, wavelength calibration, finding periodic signals in RV time series, signal interpretation, and Keplerian orbits. It's an essential reference for researchers and graduate students in the field of exoplanets, and additionally stellar spectroscopists and instrumentalists.
Planets come in many different sizes, and with many different compositions, orbiting our Sun and countless other stars. Understanding their properties and interactions requires an understanding of a diverse set of sub-fields, including orbital and atmospheric dynamics, geology, geophysics, and chemistry. This textbook provides a physics-based tour of introductory planetary science concepts for undergraduate students majoring in astronomy, planetary science, or related fields. It shows how principles and equations learned in introductory physics classes can be applied to study many aspects of planets, including dynamics, surfaces, interiors, and atmospheres. It also includes chapters on the discovery and characterization of extrasolar planets, and the physics of planet formation. Key Features Covers a wide range of planetary science topics at an introductory level Coherently links the fields of solar system science, exoplanetary science, and planet formation Each chapter includes homework questions Includes python templates for reproducing and customizing the figures in the book
This book is a compendium of key scientific questions, challenges, and opportunities across different areas of exoplanetary science. The field is currently experiencing rapid growth, and the book provides a front-row view of the advancements at the cutting-edge of the field. Each chapter contains a short exposition on the most important open questions, challenges, and opportunities in a specific area from the perspective of one or more top experts in the area. It provides a starting point for researchers, experts and non-experts alike, to obtain a quick overview of the forefront of exoplanetary science and a vision for the future of the field. Topics range from observational developments and...
Galaxies are the fundamental units of cosmic matter that make up the universe and they change in remarkable ways over 13.7 billion years of cosmic time. We are just now discovering how galaxies we can see over these billions of years are evolving from small, star forming systems to larger, more massive and passive systems at later times. This book explains the structural evolution of galaxies, how we measure it, how these measurements change with time, and how observing this reveals important information about galaxy formation and evolution. It also explains the future of the field through the use of machine learning tools, and how galaxy structure can be used as a new approach to measure unique features of the universe, such as cosmological properties and parameters.
Galaxy morphology is a long-standing subfield of astronomy, moving from visual qualifications to quantitative morphometrics. This book covers the descriptions developed by astronomers to describe the appearance of galaxies, primarily in optical, ultraviolet and near-infrared wavelengths.
'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote(R) and PowerPoint(R) formats.
Understanding planetary habitability is one of the major challenges of the current scientific era, and is a vast inter-disciplinary undertaking that combines planetary science, climate science, and stellar astrophysics. This book provides an overview of the many processes that influence the energy balance of planetary surface environments and control the sustainability of temperate conditions. These factors include such aspects as the influence of stars, the atmospheres and interiors or planets, and the orbital dynamics of planetary systems. Also described are the concepts behind the habitable zone, lessons learned from solar system data, and the vast opportunities that are provided by exoplanet discoveries, both now and into the future. Key Features: Summarises current exoplanet discoveries relevant to habitability Aimed at graduate students and researchers with an interest in exoplanets and astrobiology Describes the primary factors that influence the habitability of a planet Emphasises the need for in situ data in our solar system Covers the degeneracy of geosignatures and biosignatures
Astronomy has traditionally relied on capturing photons from cosmic sources to be able to understand the Universe. During the 20th and 21st centuries, different messengers have been added to the astronomer's toolset : cosmic rays, neutrinos, and most recently gravitational waves. Each of these messengers opens a new window on the Universe, and a modern astronomer must be familiar with them. As multimessenger astronomy becomes part of the mainstream, each messenger must be understood not only as its own astronomical domain, but as part of a whole endeavour. A broad understanding of these messengers and their relationship to each other is the main goal of this book. The unique physics of each ...
This book presents an introduction to the fundamentals of turbulent flow. Its focus is on understanding and simplifying the equations of motion for various classes of flow, so as to elucidate the most crucial and practically important aspects of the physics. Adopting a classical approach concentrated on canonical flows of various kinds, the book includes wisdom from the last few decades of research, supplementing this with biographical accounts of the 'subject giants' who have shaped the field. Practical exercises are also included, making use of online data sets that can be directly accessed while reading, allowing teachers to construct a wide range of further exercises for students, as well as facilitating independent study and analysis. Key Features: Aimed as a supplement to final year engineering or physical science undergraduate and/or first year graduate courses in turbulence, or as a basis for those entering turbulence research Authored by two experts in the field from different generations, ensuring a broad perspective Contains example questions Provides programmes for the analysis of turbulence data, including recent data from leading research laboratories