Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 678

Machine Learning and Knowledge Discovery in Databases

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 760

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2015-08-28
  • -
  • Publisher: Springer

The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, and 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 721

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2008-08-17
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 898

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2017-12-29
  • -
  • Publisher: Springer

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 749

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2014-09-01
  • -
  • Publisher: Springer

This three-volume set LNAI 8724, 8725 and 8726 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.

Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track
  • Language: en
  • Pages: 608

Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track

The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and ...

Constraint-Based Mining and Inductive Databases
  • Language: en
  • Pages: 409

Constraint-Based Mining and Inductive Databases

  • Type: Book
  • -
  • Published: 2006-02-08
  • -
  • Publisher: Springer

The interconnected ideas of inductive databases and constraint-based mining are appealing and have the potential to radically change the theory and practice of data mining and knowledge discovery. This book reports on the results of the European IST project "cInQ" (consortium on knowledge discovery by Inductive Queries) and its final workshop entitled Constraint-Based Mining and Inductive Databases organized in Hinterzarten, Germany in March 2004.

Machine Learning and Knowledge Discovery in Databases, Part III
  • Language: en
  • Pages: 683

Machine Learning and Knowledge Discovery in Databases, Part III

  • Type: Book
  • -
  • Published: 2011-09-06
  • -
  • Publisher: Springer

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Machine Learning and Knowledge Discovery in Databases. Research Track
  • Language: en
  • Pages: 509

Machine Learning and Knowledge Discovery in Databases. Research Track

None

Machine Learning and Knowledge Discovery in Databases. Research Track
  • Language: en
  • Pages: 845

Machine Learning and Knowledge Discovery in Databases. Research Track

The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and f...