You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Modern Charge-Density Analysis focuses on state-of-the-art methods and applications of electron-density analysis. It is a field traditionally associated with understanding chemical bonding and the electrostatic properties of matter. Recently, it has also been related to predictions of properties and responses of materials (having an organic, inorganic or hybrid nature as in modern materials and bio-science, and used for functional devices or biomaterials). Modern Charge-Density Analysis is inherently multidisciplinary and written for chemists, physicists, crystallographers, material scientists, and biochemists alike. It serves as a useful tool for scientists already working in the field by providing them with a unified view of the multifaceted charge-density world. Additionally, this volume facilitates the understanding of scientists and PhD students planning to enter the field by acquainting them with the most significant and promising developments in this arena.
Quantum Systems in Chemistry and Physics contains a refereed selection of the papers presented at the first European Workshop on this subject, held at San Miniato, near Pisa, Italy, in April 1996. The Workshop brought together leading experts in theoretical chemistry and molecular physics with an interest in the quantum mechanical many-body problem. This volume provides an insight into the latest research in this increasingly important field. Throughout the Workshop, the emphasis was on innovative theory and conceptual developments rather than on computational implementation. The various contributions presented reflect this emphasis and embrace topics such as density matrices and density functional theory, relativistic formulations, electron correlation, valence theory, nuclear motion, response theory, condensed matter, and chemical reactions. Audience: The volume will be of interest to those working in the molecular sciences and to theoretical chemists and molecular physicists in particular.
Aiming to provide the reader with a general overview of the mathematical and numerical techniques used for the simulation of matter at the microscopic scale, this book lays the emphasis on the numerics, but modelling aspects are also addressed. The contributors come from different scientific communities: physics, theoretical chemistry, mathematical analysis, stochastic analysis, numerical analysis, and the text should be suitable for graduate students in mathematics, sciences and engineering and technology.
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 27 covers brittle fracture, molecular detailed simulations of lipid bilayers, semiclassical bohmian dynamics, dissipative particle dynamics, trajectory-based rare event simulations, and understanding metal/metal electrical contact conductance from the atomic to continuum scales. Also included is a chapter on career opportunities in computational chemistry and an appendix listing the e-mail addresses of more than 2500 people in that discipline. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." —JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
The theoretical methods of quantum chemistry have matured to the point that accurate predictions can be made and experiments can be understood for a wide range of important gas-phase phenomena. A large part of this success can be attributed to the maturation of hierarchies of approximation, which allow one to approach very high accuracy, provided t
Catalyst technologies account for over $1 trillion of revenue in the U.S. economy alone. The applications range from medicines and alternative energy fuel cell technologies to the development of new and innovative clothing fibers. In this book, a World Technology Evaluation Center (WTEC) panel of eight experts in the field assesses the current state of research and development in catalysis by nanostructured materials, its sources of funding, and discusses the state of the field with respect to productivity and leadership in various nations around the world. In addition to showing the numerous and highly advantageous practical applications of the field, the panel concludes that Western Europe...
This issue of ECS Transactions contains papers from the Twelfth International Symposium on Solid Oxide Fuel Cells (SOFC-XII),a continuing biennial series of symposia. The papers deal with materials for cell components and fabrication methods for components and complete cells. Also contained are papers on cell electrochemical performance and its modelling, stacks and systems, and prototype testing of SOFC demonstration units for different applications.
This pioneering scholarly oeuvre evaluates the major comparative philosophy of Islamic international criminal justice. It represents an in-depth analysis of the necessities of creating an Islamic international criminal court, its possible jurisdiction, proceedings, judgments, and sanctions. It implies a court functioning under the legal personality of the International Criminal Court, with comparative international criminal lawyers with basic knowledge of Shariah contributing to the prevention of crimes and impunity at an international level. The morality and philosophy of Islamic justice are highly relevant with reference to the atrocities committed explicitly or implicitly under the pretex...
Includes entries for maps and atlases.