You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Originally delivered as a series of lectures, this volume systematically traces the evolution of the "spin" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of spin and valence; reviews a simple example of the origin of spin Hamiltonians; and explores spin density, spin populations, and spin correlation. Additional topics include nuclear hyperfine effects and electron spin-spin coupling, the g tensor, and chemical shifts and nuclear spin-spin coupling.
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
The evolution of a discipline at the intersection of physics, chemistry, and mathematics. Quantum chemistry—a discipline that is not quite physics, not quite chemistry, and not quite applied mathematics—emerged as a field of study in the 1920s. It was referred to by such terms as mathematical chemistry, subatomic theoretical chemistry, molecular quantum mechanics, and chemical physics until the community agreed on the designation of quantum chemistry. In Neither Physics Nor Chemistry, Kostas Gavroglu and Ana Simões examine the evolution of quantum chemistry into an autonomous discipline, tracing its development from the publication of early papers in the 1920s to the dramatic changes br...
This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the rel...
This book represents the proceedings of a symposium held at the Spring 1981 ACS meeting in Atlanta. The symposium brought together Theoretical Chemists, Solid State Physicists, Experimen tal Chemists and Crystallographers. One of its major aims was to increase interaction between these diverse groups which often use very different languages to describe similar concepts. The devel opment of a common language, or at least the acquisition of a multilingual capability, is a necessity if the field is to prosper. Much depends in this field on the interplay between theory and experiment. Accordingly this volume begins with two introduc tory chapters, one theoretical and the other experimental, whic...
Structure analysis is based on the phenomena of the diffraction of radia tion by materials. In the first ten to twenty years after Laue's discovery, a very complete theory was developed for the diffraction of x-rays and, later, of electrons. This theory led to equations by means of which it was possible to compute the intensity pattern for a given structure. The theory of structure analysis came to mean that of the diffraction of radiation. In 1935, Patterson pointed out a way leading to the solution of the inverse problem: the finding of the structure from a given intensity distribution pattern. At first the conservatism of researchers, and then the war, hampered the de velopment and broad application of the ideas set forth in this work. It was only during the last ten years that all the rich possibilities of the Patterson method - the method of the analysis of the convolution of the electron density - were brought to light and applied in practice.
Per-Olov Löwdin's stature has been a symbol of the world of quantum theory during the past five decades, through his basic contributions to the development of the conceptual framework of Quantum Chemistry and introduction of the fundamental concepts; through a staggering number of regular summer schools, winter institutes, innumerable lectures at Uppsala, Gainesville and elsewhere, and Sanibel Symposia; by founding the International Journal of Quantum Chemistry and Advances in Quantum Chemistry; and through his vision of the possible and his optimism for the future, which has inspired generations of physicists, chemists, mathematicians, and biologists to devote their lives to molecular electronic theory and dynamics, solid state, and quantum biology. Fundamental World of Quantum Chemistry: Volumes I, II and III form a collection of papers dedicated to the memory of Per-Olov Löwdin. These volumes are of interest to a broad audience of quantum, theoretical, physical, biological, and computational chemists; atomic, molecular, and condensed matter physicists; biophysicists; mathematicians working in many-body theory; and historians and philosophers of natural science.
In this volume we have collected some of the contributions made to the Twelfth European Workshop on Quantum Systems in Chemistry and Physics (QSCP-XII) in 2007. The workshop was held at Royal Holloway College, the most westerly campusof the University of London,and situated just a stone’s throw from Windsor Great Park. The workshop, which ran from 30 August to 5 September, continued the series that was established by Roy McWeeny in April 1996 with a meeting held at San Miniato, near Pisa. The purpose of the QSCP workshops is to bring together, in an informal atmosphere and with the aim of fostering collaboration, those chemists and physicists who share a common ?eld of interest in the theo...
A number of general-purpose, reasonably accurate and well-tested ab-initio codes for crystals are discussed in this book. The aim is to expand competence of their application in material sciences and solid-state physics. The book addresses particularly readers with a general knowledge in quantum chemistry and intends to give a deeper insight into the special algorithms and computational techniques in ab-initio computer codes for crystals. Three different programs which are available to all interested potential users on request are presented.