You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bringing together two previously distinct strands of physics, this text introduces the interdisciplinary field of quantum turbulence, the realm of quantum fluids and vortices in superfluid helium and atomic Bose–Einstein condensates. Covering state-of-the-art methods and results, it is an essential read for students and seasoned researchers alike.
This book is devoted to recent developments in the field of rotating fluids, in particular the study of Taylor--Couette flow, spherical Couette flow, planar Couette flow, as well as rotating annulus flow. Besides a comprehensive overview of the current state of the art, possible future directions in this research field are investigated. The first part of this volume presents several new results in the classical Taylor--Couette system covering diverse theoretical, experimental and numerical work on bifurcation theory, influence of boundary conditions, counter-rotating flows, spiral vortices and many others. The second part focuses on spherical Couette flows, including isothermal flows, thermal convective motion, as well as magnetohydrodynamics in spherical shells. The remaining parts are devoted to Goertler vortices, rotating annulus flows, as well as superfluid Couette flows. The present book will be of interest to all researchers and graduate students working actively in the field.
This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. Th...
Recent investigations have highlighted the similarities between turbulence in cryogenic fluids at temperatures close to absolute zero, in particular superfluid helium, and turbulence in ordinary fluids. This book contains lectures on various theoretical and experimental aspects of the problem given by experts at the advanced school “Vortices and Turbulence at Low Temperatures” held at CISM, Udine, in the summer of 2007. The lectures provide an introduction into this rapidly expanding area of research. The book is suitable to PhD students and young researchers starting their career as well as established researchers in either low temperature physics or fluid mechanics who are interested in this problem.
This volume comprises the communications presented at the EUROMECH European Turbulence Conference ETC12, held in Marburg in September 2009. The topics covered by the meeting include: Acoustics of turbulent flows, Atmospheric turbulence, Control of turbulent flows, Geophysical and astrophysical turbulence, Instability and transition, Intermittency and scaling, Large eddy simulation and related techniques, Lagrangian aspects, MHD turbulence, Reacting and compressible turbulence, Transport and mixing, Turbulence in multiphase and non-Newtonian flows, Vortex dynamics and structure, formation, Wall bounded flows.
Controlling turbulence is an important issue for a number of technological applications. Several methods to modulate turbulence are currently being investigated. This book describes various aspects of turbulence structure and modulation, and explains and discusses the most promising techniques in detail.
The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there are some exercises. Detailed solutions can be made available to instructors upon request to the authors.
Progress in Low Temperature Physics: Quantum Turbulence presents seven review articles on the recent developments on quantum turbulence. Turbulence has been a great mystery in natural science and technology for more than 500 years since the time of Leonardo da Vinci. Recently turbulence in quantum systems at low temperatures has developed into a new research field. Quantum turbulence is comprised of quantized vortices, realized in superfluid helium and quantum gases of cold atoms. Some of the important topics include energy spectra, vibrating structures, and visualization techniques. The understanding of these remarkable systems can have an impact on the general field of turbulence and will ...
This book is based on the outcome of the “2012 Interdisciplinary Symposium on Complex Systems” held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexit...
This volume comprises the communications presented at the ETC 11, the EUROMECH European Turbulence conference held in 2007 in Porto. The scientific committee has chosen the contributions out of the following topics: Acoustics of turbulent flows; Atmospheric turbulence; Control of turbulent flows; Geophysical and astrophysical turbulence; Instability and transition; Intermittency and scaling; Large eddy simulation and related techniques; MHD turbulence; Reacting and compressible turbulence; Transport and mixing; Turbulence in multiphase and non-Newtonian flows; Vortex dynamics and structure formation; Wall bounded flows.