You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A unique approach illustrating discrete distribution theory through combinatorial methods This book provides a unique approach by presenting combinatorial methods in tandem with discrete distribution theory. This method, particular to discreteness, allows readers to gain a deeper understanding of theory by using applications to solve problems. The author makes extensive use of the reduction approach to conditional distributions of independent random occupancy numbers, and provides excellent studies of occupancy and sequential occupancy distributions, convolutions of truncated discrete distributions, and compound and mixture distributions. Combinatorial Methods in Discrete Distributions begin...
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition A CD-ROM containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that re...
Developed from the author's popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and pract
Linear algebra forms the basis for much of modern mathematics—theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation. The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jord...
The discrete mathematics and theoretical computer science communities have recently witnessed explosive growth in the area of algorithmic combinatorics on words. The next generation of research on combinatorics of partial words promises to have a substantial impact on molecular biology, nanotechnology, data communication, and DNA computing. Delving
Accessible to undergraduate students, Introduction to Combinatorics presents approaches for solving counting and structural questions. It looks at how many ways a selection or arrangement can be chosen with a specific set of properties and determines if a selection or arrangement of objects exists that has a particular set of properties. To give students a better idea of what the subject covers, the authors first discuss several examples of typical combinatorial problems. They also provide basic information on sets, proof techniques, enumeration, and graph theory—topics that appear frequently throughout the book. The next few chapters explore enumerative ideas, including the pigeonhole pri...
Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Godel, Church
Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities of set partitions from 1500 A.D. to today. Each chapter gives historical perspectives and contrasts different approaches, including generating functions, kernel method, block decomposition method, generating tree, and Wilf equivalences. Methods and definitions are illustrated with worked examples and MapleTM code. End-of-chapter problems often draw on data from published papers and the author’s extensive research in this field. The text also explores research directions that extend the results discussed. C++ programs and output tables are listed in the appendices and available for download on the author’s web page.
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition—over 400 pages longer than its predecessor—incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an extensive guide to the research literature and pointers to monographs. In addition, a glossary is included in each chapter as well as at the end of each section. This edition also contains notes regarding terminology and notation. With 34 new contributors, this handbook is the most comprehensive single-source guide to graph theory. It emphasizes quick accessibility to topics for non-experts and enables easy cross-referencing among chapters.