You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.
Linear algebra forms the basis for much of modern mathematics—theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation. The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jord...
Understanding and Implementing the Finite Element Method Mark S. Gockenbach "Upon completion of this book a student or researcher would be well prepared to employ finite elements for an application problem or proceed to the cutting edge of research in finite element methods. The accuracy and the thoroughness of the book are excellent." --Anthony Kearsley, research mathematician, National Institute of Standards and Technology The infinite element method is the most powerful general-purpose technique for computing accurate solutions to partial differential equations. Understanding and Implementing the Finite Element Method is essential reading for those interested in understanding both the the...
The ?nite element method is the most powerful general-purpose technique for computing accurate solutions to partial differential equations. Understanding and Implementing the Finite Element Method is essential reading for those interested in understanding both the theory and the implementation of the ?nite element method for equilibrium problems. This book contains a thorough derivation of the finite element equations as well as sections on programming the necessary calculations, solving the finite element equations, and using a posteriori error estimates to produce validated solutions. Accessible introductions to advanced topics, such as multigrid solvers, the hierarchical basis conjugate...
This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.
Computational methods are an integral part of most scientific disciplines, and a rudimentary understanding of their potential and limitations is essential for any scientist or engineer. This textbook introduces computational science through a set of methods and algorithms, with the aim of familiarizing the reader with the field’s theoretical foundations and providing the practical skills to use and develop computational methods. Centered around a set of fundamental algorithms presented in the form of pseudocode, this self-contained textbook extends the classical syllabus with new material, including high performance computing, adjoint methods, machine learning, randomized algorithms, and q...
Inverse problems occur frequently in science and technology, whenever we need to infer causes from effects that we can measure. Mathematically, they are difficult problems because they are unstable: small bits of noise in the measurement can completely throw off the solution. Nevertheless, there are methods for finding good approximate solutions. Linear Inverse Problems and Tikhonov Regularization examines one such method: Tikhonov regularization for linear inverse problems defined on Hilbert spaces. This is a clear example of the power of applying deep mathematical theory to solve practical problems. Beginning with a basic analysis of Tikhonov regularization, this book introduces the singular value expansion for compact operators, and uses it to explain why and how the method works. Tikhonov regularization with seminorms is also analyzed, which requires introducing densely defined unbounded operators and their basic properties. Some of the relevant background is included in appendices, making the book accessible to a wide range of readers.
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on ...
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 c...