You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.
This volume consists of a collection of articles for the proceedings of the 40th Taniguchi Symposium Analysis and Geometry in Several Complex Variables held in Katata, Japan, on June 23-28, 1997. Since the inhomogeneous Cauchy-Riemann equation was introduced in the study of Complex Analysis of Several Variables, there has been strong interaction between Complex Analysis and Real Analysis, in particular, the theory of Partial Differential Equations. Problems in Complex Anal ysis stimulate the development of the PDE theory which subsequently can be applied to Complex Analysis. This interaction involves Differen tial Geometry, for instance, via the CR structure modeled on the induced structure ...
Special geometries as well as the relation between curvature and topology have always been of interest to differential geometers. More recently, these topics have turned out to be of use in physical problems related to string theory as well. This volume provides a unique and thorough survey on the latest developments on Riemannian geometry, special geometrical structures on manifolds, and their interactions with other fields such as mathematical physics, complex analysis, andalgebraic geometry. This volume presents ten papers written by participants of the ``Short Program on Riemannian Geometry,'' a workshop held at the CRM in Montreal in 2004. It will be a valuable reference for graduate students and research mathematicians alike. Information for our distributors: Titles inthis series are copublished with the Centre de Recherches Mathematiques.
Just list for purposes of NBB.
On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur ...
Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions...
Burn for Burn