You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Concise introduction to permutation groups, focusing on invariant cartesian decompositions and applications in algebra and combinatorics.
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.
The invited lectures given at the 16th. British Combinatorial Conference, July 1997 at Queen Mary and Westfield College.
The book contains 8 detailed expositions of the lectures given at the Kaikoura 2000 Workshop on Computability, Complexity, and Computational Algebra. Topics covered include basic models and questions of complexity theory, the Blum-Shub-Smale model of computation, probability theory applied to algorithmics (randomized alogrithms), parametric complexity, Kolmogorov complexity of finite strings, computational group theory, counting problems, and canonical models of ZFC providing a solution to continuum hypothesis. The text addresses students in computer science or mathematics, and professionals in these areas who seek a complete, but gentle introduction to a wide range of techniques, concepts, and research horizons in the area of computational complexity in a broad sense.
Over the past 20 years, the theory of groups — in particular simple groups, finite and algebraic — has influenced a number of diverse areas of mathematics. Such areas include topics where groups have been traditionally applied, such as algebraic combinatorics, finite geometries, Galois theory and permutation groups, as well as several more recent developments. Among the latter are probabilistic and computational group theory, the theory of algebraic groups over number fields, and model theory, in each of which there has been a major recent impetus provided by simple group theory. In addition, there is still great interest in local analysis in finite groups, with substantial new input from methods of geometry and amalgams, and particular emphasis on the revision project for the classification of finite simple groups.This important book contains 20 survey articles covering many of the above developments. It should prove invaluable for those working in the theory of groups and its applications.
This volume contains contributions by the participants of the conference "Groups and Computation", which took place at The Ohio State University in Columbus, Ohio, in June 1999. This conference was the successor of two workshops on "Groups and Computation" held at DIMACS in 1991 and 1995. There are papers on permutation group algorithms, finitely presented groups, polycyclic groups, and parallel computation, providing a representative sample of the breadth of Computational Group Theory. On the other hand, more than one third of the papers deal with computations in matrix groups, giving an in-depth treatment of the currently most active area of the field. The points of view of the papers range from explicit computations to group-theoretic algorithms to group-theoretic theorems needed for algorithm development.
This second volume of a two-volume book contains selected papers from the international conference Groups St Andrews 2009. Leading researchers in their respective areas, including Eammon O'Brien, Mark Sapir and Dan Segal, survey the latest developments in algebra.
Selected papers from 'Groups St Andrews 2005' cover a wide spectrum of modern group theory.
This book summarizes recent developments in the study of permutation groups for beginning graduate students.
These nine articles provide up-to-date surveys of topics of contemporary interest in combinatorics.