You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications.
This book systematically introduces the fundamentals, preparation technology, state-of-the-art applications, and future development of biomass-derived porous carbon materials. The authors provide a theoretical foundation that demonstrates the microstructure and physicochemical properties of carbon materials. The fabrication methods, including physical activation methods, chemical activation methods, and advances in other new fabrication methods are explicitly described. The book also identifies many potential applications of biomass (especially biomass-derived porous carbon materials), such as supercapacitors, removal of organic pollutants from water, CO2 capture, photocatalytic application, and farmland restoration. The book will be a valuable resource for researchers, scientists, and engineers working in the field of biomass-derived porous carbon materials, carbon resource development, and environmental protection.
Annotation. Plasma Polymer Films examines the current status of the deposition and characterization of fluorocarbon-, hydrocarbon- and silicon-containing plasma polymer films and nanocomposites, with plasma polymer matrix. It introduces plasma polymerization process diagnostics such as optical emission spectroscopy (OES, AOES), and describes special deposition techniques such as atmospheric pressure glow discharge. Important issues for applications such as degradation and stability are treated in detail, and structural characterization, basic electrical and optical properties and biomedical applications are discussed.
The global population is expected to rise to 9.8 billion by the year 2050 - with everyone ultimately striving for prosperity. New methods must therefore be found to achieve more efficient production. Research to date shows that the biological inventory that has evolved: its products, processes, principles and tools, can spur modern technology. The development of technological innovations based on biological concepts, with the goal of particularly innovative and sustainable value creation, today is collectively known as "biological transformation". It results in highly functional products with striking properties that can be both manufactured and utilized in a resource-saving way. In terms of taking responsibility of the good of all people, biological transformation is therefore a path that applied research will have to take. The Fraunhofer-Gesellschaft has recognized the developmental technology potential of biological transformation and sees it as its task not only to drive the relevant research forward, but also to promote public awareness of the topic.
The result of decades of research by a pioneer in the field, this is the first book to deal exclusively with achieving high-performance metal-polymer composites by chemical bonding. Covering both the academic and practical aspects, the author focuses on the chemistry of interfaces between metals and polymers with a particular emphasis on the chemical bonding between the different materials. He elucidates the various approaches to obtaining a stable interface, including, but not limited to, thermodynamically driven redox reactions, bond protection to prevent hydrolysis, the introduction of barrier layers, and stabilization by spacer molecules. Throughout, chemical bonding is promoted as a simple and economically viable alternative to adhesion based on reversible weak physical interaction. Consequently, the text equips readers with the practical tools necessary for designing high-strength metal-polymer composites with such desired properties as resilience, flexibility, rigidity or degradation resistance.
None