You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the fourth in a multidisciplinary series which brings together leading researchers in the STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health) to present their perspective on advances in their own specific fields, and to generate a genuinely interdisciplinary collaboration that transcends parochial subject-matter boundaries. All contributions are carefully edited, peer-reviewed, reasonably self-contained, and pedagogically crafted for a multidisciplinary readership. Contributions are drawn from a variety of fields including mathematics, statistics, game theory and behavioral sciences, biomathematics and physical chemistry, computer science ...
Is evolution predictible? Taking into account the results of such diverse disciplines of natural sciences as e. g. genetics embryology, ecology, palaeontology on the threshold of the coming century, the authors stretch out their ideas for discussing this question. Charles Devillers, biologist, and Jean Chaline, palaeontologist and geologist, developed a new assessment of the historic framework of evolution, based on their longterm experiences in scientific research, also including philosophical aspects to life. They aimed the book at a publicreceptive to problems of the origin and evolution of life and especially of mankind to teachers and scientists of various topics in the sciences of life, Earth and the Universe.
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
Can we coexist with the other life forms that have evolved on this planet? Are there realistic alternatives to fossil fuels that would sustainably provide for human society's energy needs and have fewer harmful effects? How do we deal with threats such as emergent diseases? Mathematical models—equations of various sorts capturing relationships between variables involved in a complex situation—are fundamental for understanding the potential consequences of choices we make. Extracting insights from the vast amounts of data we are able to collect requires analysis methods and statistical reasoning. This book on elementary topics in mathematical modeling and data analysis is intended for an ...
The papers in this volume reflect a broad spectrum of current research activities on the theory and applications of nonlinear dynamics and evolution equations. They are based on lectures given during the International Conference on Nonlinear Dynamics and Evolution Equations at Memorial University of Newfoundland, St. John's, NL, Canada, July 6-10, 2004. This volume contains thirteen invited and refereed papers. Nine of these are survey papers, introducing the reader to, anddescribing the current state of the art in major areas of dynamical systems, ordinary, functional and partial differential equations, and applications of such equations in the mathematical modelling of various biological and physical phenomena. These papers are complemented by four research papers thatexamine particular problems in the theory and applications of dynamical systems. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).
In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.
Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics.This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples.The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.